| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | 00000             | 0000000 |                            |
|              |      |                   |         |                            |

# Modelling Loss Given Default with ESG Information

Junfeng Zhang, Galina Andreeva, Yizhe Dong

Credit Research Centre, University of Edinburgh J.Zhang-161@sms.ed.ac.uk

> Credit Scoring and Credit Control Conference XVIII Augest 31, 2023



Junfeng Zhang Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | ೦೦೦೦೦             | 0000000 |                            |
|              |      |                   |         |                            |

# **Presentation Overview**



2 Data

## 3 Methodology Setup

# 4 Result

## **5** Conclusion and Future Work

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶ ◆□

Junfeng Zhang Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| ●00          | 000  | 00000             | 0000000 |                            |
|              |      |                   |         |                            |

# Modelling LGD with ESG Information

- Existing studies shows that show that a better ESG performance can effectively mitigate a firm's credit risk
- How does specific credit risk components such as probability of default (PD) and loss given default (LGD) interact with ESG is still unknown.
- Breaking the overall credit risk measure down and analyzing how ESG interact with these specific credit risk components are helpful with better understand how ESG affect credit risk, thus to better manage credit risk under the Basel Accord.

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| O●O          | 000  | 00000             | 0000000 |                            |
|              |      |                   |         |                            |

# References

#### Key Literature



Jankowitsch, R., Nagler, F., Subrahmanyam, M. G. (2014)

The determinants of recovery rates in the US corporate bond market *Journal of Financial Economics* 114(1), 155-177.

### Yao, X., Crook, J., Andreeva, G. (2015)

Support vector regression for loss given default modelling European Journal of Operational Research 240(2), 528-538.

#### Yao, X., Crook, J., Andreeva, G. (2017)

Enhancing two-stage modelling methodology for loss given default with support vector machines *European Journal of Operational Research* 263(2), 679-689.



#### Henisz, W. J., McGlinch, J. (2019)

ESG, material credit events, and credit risk. Journal of Applied Corporate Finance 31(2), 105-117.

#### Kellner, R., Nagl, M., Rösch, D. (2022)

Opening the black box–Quantile neural networks for loss given default prediction *Journal of Banking and Finance* 134, 106334.

| Introduction<br>00● | Data<br>000 | Methodology Setup<br>೦೦೦೦೦ | Result<br>0000000 | Conclusion and Future Work |
|---------------------|-------------|----------------------------|-------------------|----------------------------|
|                     |             |                            |                   |                            |
| Contribution        |             |                            |                   |                            |

- We prove that ESG information is useful in LGD modelling from a predictive paradigm.
- We expand this finding by exploring the impact of ESG variables on LGD in different segmentation models.
- We find the relationship between LGD and ESG variables follows a temporal structure with the rolling window regression, and ESG information are more effective for estimating LGD in adverse macroeconomic environments (e.g., financial crisis).

| Introduction<br>000  | Data<br>●OO | Methodology Setup<br>00000 | Result<br>0000000 | Conclusion and Future Work |
|----------------------|-------------|----------------------------|-------------------|----------------------------|
|                      |             |                            |                   |                            |
| Data<br>Data Sources |             |                            |                   |                            |
|                      |             |                            |                   |                            |

| Type of Variables              | Source                                | Access Platform                    |
|--------------------------------|---------------------------------------|------------------------------------|
| Macroeconomic Information      | U.S. Bureau of Economic Analysis      | U.S. St. Louis Federal Reserve     |
| Financial Ratios               | Compustat                             | Wharton Research Database Services |
| Debt-Level Characteristics     | Moody's Default and Recovery Database | Moody                              |
| CSR/ESG Information            | MSCI:KLD                              | Wharton Research Database Services |
| Loss Given Default Measurement | Moody's Default and Recovery Database | Moody                              |

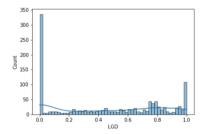
Table: Sources of Variables

#### ・ロト・日本・山田・山田・山口・山

Modelling Loss Given Default with ESG Information

| Introduction<br>000            | Data<br>O●O | Methodology Setup<br>೦೦೦೦೦ | Result<br>0000000 | Conclusion and Future Work |
|--------------------------------|-------------|----------------------------|-------------------|----------------------------|
|                                |             |                            |                   |                            |
| <b>Data</b><br>Data Highlights |             |                            |                   |                            |

- 1,104 Samples from 211 firms between 1992 and 2019
- 4 independent variable groups:
  - Debt-level characteristics: Seniority, Principal amount, etc.
  - Financial ratios: LTR, Intangible ratio, Profitability, etc.
  - Macroeconomic variables: UNRATE, DFF, etc.
  - ESG information
- Typical Bi-modal distribution of LGD



#### ・ロ・・ロ・・ボ・・ボ・・ロ・

University of Edinburgh

Modelling Loss Given Default with ESG Information

| Introduction<br>000                 | Data<br>OO● | Methodology Setup<br>೦೦೦೦೦ | Result<br>0000000 | Conclusion and Future Work |
|-------------------------------------|-------------|----------------------------|-------------------|----------------------------|
|                                     |             |                            |                   |                            |
| <b>Data</b><br>ESG Variable Details |             |                            |                   |                            |
|                                     |             |                            |                   |                            |

| Perspective                  | Involved Variables                                                         |
|------------------------------|----------------------------------------------------------------------------|
| Environmental Concerns       | ENV_con_num                                                                |
| Environmental Strengths      | ENV_str_num                                                                |
| Social Concerns              | COM_con_num, DIV_con_num, PRO_con_num, HUM_con_num, EMP_con_num, Other_con |
| Social Strengths             | COM_str_num, DIV_str_num, PRO_str_num, EMP_str_num                         |
| Company Governance Concerns  | CGOV_con_num                                                               |
| Company Governance Strengths | CGOV_str_num                                                               |

Table: ESG Variables

#### ・ロト・日本・山田・山田・山口・山

University of Edinburgh

Modelling Loss Given Default with ESG Information

| Introduction<br>000               | Data<br>000 | Methodology Setup<br>●0000 | Result<br>0000000 | Conclusion and Future Work |
|-----------------------------------|-------------|----------------------------|-------------------|----------------------------|
|                                   |             |                            |                   |                            |
| Methodology<br>Truncated GBDT - 1 |             |                            |                   |                            |

For dataset  $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , and a differentiable loss function  $L(y_i, F(\mathbf{x}))$  (squared error for this regression task), the gradient boosting tree regressor initiate its base learner with a constant value, i.e.,

$$F_0(\mathbf{x}) = \underset{\gamma}{\operatorname{argmin}} \sum_{i=1}^n L(y_i, \gamma)$$
(1)

Then, for m = 1 to M, the model compute

$$r_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$
(2)

for i = 1, ..., n and fit a regression tree to the  $r_{im}$  values and create terminal regions  $R_{jm}$ . For  $j = 1, ..., J_m$ , the model computes

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{\mathbf{x}_i \in R_{ij}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$$
(3)

University of Edinburgh

Modelling Loss Given Default with ESG Information

| Introduction<br>000               | Data<br>000 | Methodology Setup<br>○●○○○ | Result<br>0000000 | Conclusion and Future Work |
|-----------------------------------|-------------|----------------------------|-------------------|----------------------------|
|                                   |             |                            |                   |                            |
| Methodology<br>Truncated GBDT - 2 |             |                            |                   |                            |
|                                   |             |                            |                   |                            |

At the end of each iteration for m = 1 to M, update

$$F_{M}(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \beta_{m} \sum_{j=1}^{J_{m}} \gamma_{jm} \ I(\mathbf{x} \in R_{jm})$$
(4)

where  $\beta$  is the weight and the final predictor of gradient boosting tree regressor is  $F(\mathbf{x})$ .

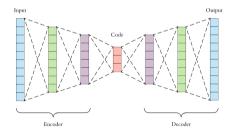
On the top of this gradient boosting tree regressor, we use truncated setting to better estimate LGD. The truncation setting makes the prediction of LGD bounded in [0, 1], i.e.,

$$\hat{y}_{\text{truncated}} = \min(1, \max(0, \hat{y})) \tag{5}$$

- The dataset is split 70:30 into training set and test set with out-of-time approach.
- Evaluation metrics: MSE and MAE

| Introduction<br>000                      | Data<br>000    | Methodology Setup<br>○○●○○ | Result<br>0000000 | Conclusion and Future Work |
|------------------------------------------|----------------|----------------------------|-------------------|----------------------------|
|                                          |                |                            |                   |                            |
| Methodology<br>AutoEncoder for Feature B | Extraction - 1 |                            |                   |                            |

An AutoEncoder is a neural network model that seeks to learn a compressed representation of an input. Because a represented single score from irrelevant but proven key factors of LGD is needed to reduce the interference on the focused ESG variables.





| Introduction<br>000                                                                                                                                                                                                             | Data<br>000 | Methodology Setup<br>○○○●○ | Result<br>0000000 | Conclusion and Future Work |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|-------------------|----------------------------|--|--|
|                                                                                                                                                                                                                                 |             |                            |                   |                            |  |  |
| Methodology<br>AutoEncoder for Feature Extraction - 2                                                                                                                                                                           |             |                            |                   |                            |  |  |
| Before feeding the data into the autoEncoder, the data must be scaled between 0 and 1 using<br>MinMaxScaler, because we will use the Sigmoid activation function in the output layer, which outputs a<br>value between 0 and 1. |             |                            |                   |                            |  |  |

|         | Architecture                                                                                                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Encoder | Dense Layer, 32 neurons, Activation function = ReLu<br>Dense Layer, 16 neurons, Activation function = ReLu<br>Dense Layer, 8 neurons, Activation function = ReLu<br>Dense Layer, 1 neurons, Activation function = ReLu        |
| Decoder | Dense Layer, 8 neurons, Activation function = ReLu<br>Dense Layer, 16 neurons, Activation function = ReLu<br>Dense Layer, 32 neurons, Activation function = ReLu<br>Dense Layer, # of features, Activation function = Sigmoid |

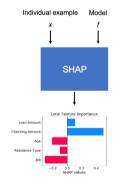
Table: The Architechture of the AutoEncoder

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | ○○○○●             | 0000000 |                            |
|              |      |                   |         |                            |

## Methodology SHAP (SHapley Additive exPlanations) and Model Interpretability

- The goal of SHAP is to explain the prediction of an instance x by computing the contribution of each feature to the prediction.
- The SHAP explanation method computes Shapley values from coalitional game theory.
- SHAP is a model-agnostic method. SHAP TreeExplainer is especially compatible with tree-based learners with faster processing speed.



イロッ イボッ イヨッ

|                          |                                   | ita<br>SO                  | Methodology Sel            |                              | Result<br>●0000000      |                         | Conclusion and Future     |
|--------------------------|-----------------------------------|----------------------------|----------------------------|------------------------------|-------------------------|-------------------------|---------------------------|
|                          |                                   |                            |                            |                              |                         |                         |                           |
| S <b>ult</b><br>Main Mod | el                                |                            |                            |                              |                         |                         |                           |
|                          |                                   |                            |                            |                              |                         |                         |                           |
|                          |                                   |                            |                            |                              |                         |                         |                           |
|                          |                                   |                            |                            |                              |                         |                         |                           |
| Out-                     | of-time Split                     |                            |                            |                              |                         |                         |                           |
| Out-                     | of-time Split<br>All<br>0.1046*** | <b>No ESG</b><br>0.1173*** | <b>No Fin</b><br>0.0996*** | <b>No Macro</b><br>0.1119*** | <b>ESG</b><br>0.1085*** | <b>Fin</b><br>0.1323*** | <b>Macro</b><br>0.1142*** |

| MSE | <b>All</b><br>0.0449*** | <b>No ESG</b><br>0.0458*** | <b>No Fin</b><br>0.0492 | <b>No Macro</b><br>0.0495 | <b>ESG</b><br>0.0693*** | <b>Fin</b><br>0.0498 | <b>Macro</b><br>0.0517*** |
|-----|-------------------------|----------------------------|-------------------------|---------------------------|-------------------------|----------------------|---------------------------|
| MAE | 0.1369***               | 0.1387***                  | 0.1489***               | 0.1500***                 | 0.1896***               | 0.1520***            | 0.1547***                 |

Table: Modelling Performance with Different Variable Groups (\*\*\*indicating all pairs with this model are significantly different at 99% level)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | 00000             | o●oooooo |                            |
| Result       |      |                   |          |                            |

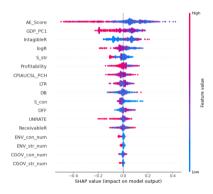


Figure: Summary Plot of SHAP Values

University of Edinburgh

R1. Main Model

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | 00000             | 00●00000 |                            |
|              |      |                   |          |                            |

## Result R2. Segmentation Model 1 - Seniority

| ТҮРЕ                      | Mean LGD | Count |
|---------------------------|----------|-------|
| Junior Subordinated Bonds | 0.9746   | 7     |
| Revolver                  | 0.1201   | 169   |
| Senior Secured Bonds      | 0.4544   | 217   |
| Senior Subordinated Bonds | 0.7934   | 43    |
| Senior Unsecured Bonds    | 0.5763   | 477   |
| Subordinated Bonds        | 0.7374   | 23    |
| Term Loans                | 0.2846   | 168   |

Table: Mean LGD for Each Seniority Subgroup

|     | Secured | Secured w/o ESG | Unsecured | Unsecured w/o ESG |
|-----|---------|-----------------|-----------|-------------------|
| MSE | 0.1983  | 0.1920          | 0.1076    | 0.1134            |
| MAE | 0.3596  | 0.3541          | 0.2685    | 0.2745            |

Table: Modelling Performance in Seniority Segmentation

▲□▶▲□▶▲□▶▲□▶▲□▶▲□

University of Edinburgh

Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | ೦೦೦೦೦             | 000●0000 |                            |
|              |      |                   |          |                            |

## Result R2. Segmentation Model 1 - Seniority

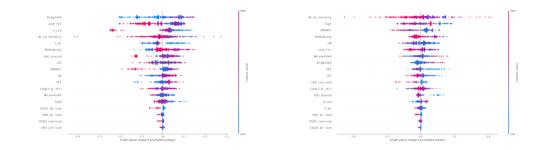


Figure: Summary Plots of SHAP, Unsecured (Left) vs Secured (Right)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

University of Edinburgh

#### Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | ೦೦೦೦೦             | 0000●000 |                            |
|              |      |                   |          |                            |

## Result R3. Segmentation Model 2 - Industry

| Segmentation | Industry                                                                                                                                                                                                  | Count |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Green        | Telecommunications<br>Media<br>Retai<br>Consumer Products<br>Technology<br>Services<br>Distribution<br>Packaging<br>Gaming: Casinos<br>Healthcare<br>Restaurants<br>Retail: Specialty<br>Natural Products |       |  |
| Brown        | Energy<br>Transportation<br>Automotive<br>Manufacturing<br>Chemicals<br>Metal & Mining<br>Construction<br>Pharmaceuticals<br>Aircraft & Aerospace                                                         | 668   |  |

Table: Count for Different Industry Segments

|     | Brown  | Brown w/o ESG | Green  | Green w/o ESG |
|-----|--------|---------------|--------|---------------|
| MSE | 0.1754 | 0.1816        | 0.2165 | 0.2303        |
| MAE | 0.3346 | 0.3385        | 0.3692 | 0.3860        |

Table: Modelling Performance in Industry Segmentation



University of Edinburgh

Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | ೦೦೦೦೦             | 00000●00 |                            |
|              |      |                   |          |                            |

## Result R3. Segmentation Model 2 - Industry

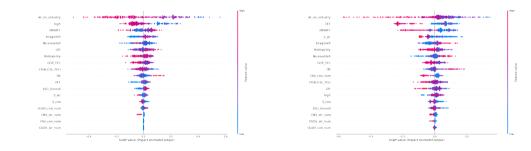


Figure: Summary Plots of SHAP, Brown (Right) vs Green (Left)

| Introduction | Data | Methodology Setup | Result   | Conclusion and Future Work |
|--------------|------|-------------------|----------|----------------------------|
| 000          | 000  | 00000             | 000000●0 |                            |
|              |      |                   |          |                            |

## Result R4. Multi-Stage Segmentation

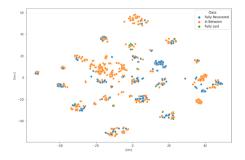


Figure: Spatial Visualization of Three Types of Loss by T-SNE

|                      | Find Fully Lost | Find Fully Recovered | Find In Between |
|----------------------|-----------------|----------------------|-----------------|
| With ESG Variable    | <b>0.6660</b>   | <b>0.8680</b>        | <b>0.8338</b>   |
| Without ESG Variable | 0.5794          | 0.8395               | 0.8007          |

Table: How ESG Information Boosts Classification in Multi-Stage Modelling

#### ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

University of Edinburgh

#### Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | 00000             | 000000● |                            |
|              |      |                   |         |                            |

## Result R5. Rolling Window Regression



Figure: The Change of Predictive Performance of Selected Variables Over Time

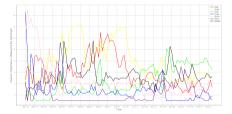


Figure: The Change of Feature Importance of ESG Variables Over Time



Junfeng Zhang Modelling Loss Given Default with ESG Information

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | 00000             | 0000000 | ●OO                        |
|              |      |                   |         |                            |

# Conclusion

- ESG information can enhance the predictive accuracy of LGD estimation as the effective supplement to other proven efficient variable groups and this relationship follows a temporal structure.
- Social perspective play the most significant role in LGD modelling among three pillars of ESG as social perspective includes more information compared with other two dimensions and tends to reflect the risk in the long run.
- ESG information are more effective when estimating LGD of riskier segments.

| Introduction | Data | Methodology Setup | Result  | Conclusion and Future Work |
|--------------|------|-------------------|---------|----------------------------|
| 000          | 000  | 00000             | 0000000 | O●O                        |
|              |      |                   |         |                            |

## **Future Work**

Directions:

- Optimize the modelling framework for LGD
- Seek alternative information source for modelling LGD
- Temporal characteristics of LGD and with PD

Another presentation tomorrow for using information extracted from 10-K to model LGD.

# The End

Questions? Comments?

