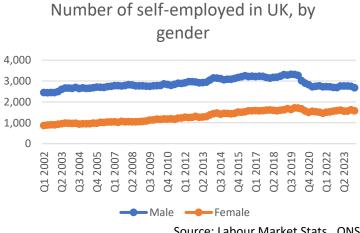


"The menopause transition and the gender gap in entrepreneurship"

Louise Rowllings
PhD Candidate (2nd Year)


ScotDoc Colloquium in A&F University of Glasgow Adam Smith Business School

21 June 2024

Motivation

- Gender employment/pay gap has declined in recent decades1 Gender gap in entrepreneurship/self-employment persists2
- Scholars have investigated a range of channels through which gender influences entrepreneurial performance
- Particular focus on household / family formation and childcare (as part of view across the 'life course')

Source: Labour Market Stats., ONS

Impact of gendered ageing has rarely been studied₃ – notable gap in literature around gender differences in 'mid-life'

Motivation

What We Know:

UK Self-employment among women increased at fast rate than any other category (driven by mid-life women)

- Research on the association between mid-life health (menopause) and work is still relatively scarce (Verdonk & Bendien, 2022)
- Strong association between 'bothersome' menopause symptoms and work ability
 - Employed women change job, reduce hours or quit
 - Psychological / psychosocial most strongly associated (e.g. Geukes et al, 2012; Bazeley et al, 2022; Bryson et al, 2022; D'Angelo et al, 2022)
- Hormone Replacement Therapy (HRT) is found to be the most effective treatment for symptoms; use was negatively impacted in early 2000s by studies (erroneously) suggesting risks outweigh benefits for all (e.g. Menon et al, 2007; Pines, 2018; Crawford et al, 2018)

Research Question

- What We Don't Know:
 - No research compares mid-life women to mid-life men, when considering how menopause is related to employment (Brewis et al, 2017)
 - No research considers women who are self-employed/business owners
 - Either ignored or expressly excluded (e.g. Bryson et al, 2022)
 - Is nature of relationship between menopause and work similar to that of employed women?
 - Fundamental differences in flexibility, control and support

"How is the menopause transition associated with selfemployment likelihood, and performance, for midlife women?"

Methodology

Data from English Longitudinal Study of Ageing

- Measure changes in health, economic and social circumstances
- English
 Longitudinal
 Study of
 Ageing

- 9 bi-annual survey 'Waves' (2002-2018)
- Restrict sample to those age 40-65, with at least one period of work (Emp or SEmp)
- Unbalanced panel (due to attrition; sample replacement; non-response)

Survey										Total
Wave	1	2	3	4	5	6	7	8	9	Panel
All IDs	1572	1509	2598	3527	3479	3943	3509	2745	2012	24894
Males	716	690	1207	1652	1632	1833	1581	1198	855	11364
Females	856	819	1391	1875	1847	2110	1928	1547	1157	13530

- Variables of interest:
 - Dependent (Y): Employment Type / Weekly Hours Worked / Av. Hourly Income
 - Explanatory (X): Menopause Status
 - Vector of controls e.g. individual characteristics

Early Work – Correlation (at best!)

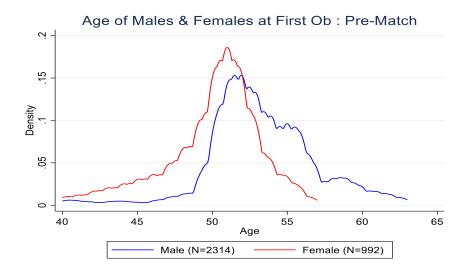
$$Y_{i,t,a,r} = \alpha_t + \lambda_a + \Upsilon_r + \beta_1 Menopause Status + \delta X_i + \epsilon_{i,t,a,r}$$

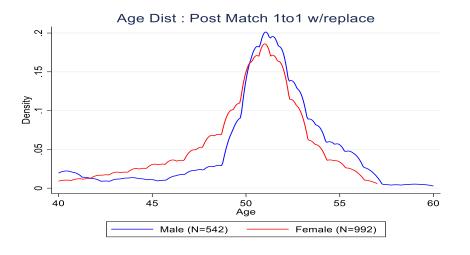
	(1) Self-Empl	_(2) Av Weekly Ho	urs (2) Av Ho	(2) Av Hourly Income	
		Employed S/Er	np Employed	S/Emp	
Menopause Status					
Early/Prem	0.107***	-9.385*** -7.992	2*** -0.507***	-2.426	
	(0.060)	(0.951) (2.93	30) (0.445)	(2.139)	
Surgical	0.095***	-9.827*** -11.25	4*** -0.84***	6.055*	
	(0.040)	(0.568) (1.93	36) (0.274)	(3.478)	
Pre/Peri	0.261***	-9.803*** -11.34	7*** -1.083***	-0.077	
	(0.0657)	(0.465) (1.74	15) (0.259)	(1.435)	
Post	0.191***	-10.068*** -11.63	0*** -1.317***	1.637	
	(0.0267)	(0.345) (1.19	91) (0.174)	(1.107)	

Model does not address endogeneity

No causal interpretation

Systematic differences between males & females not addressed


Empirical Work


Identification: Strategy 1

- Use subset of Panel which only includes women who we observe changing menopause status (N=992)
- Selection Bias: use Propensity Score Matching (list of individual characteristics) to also include a sample of men who are 'very similar'
- Endogeneity: consider menopause as an exogenous 'shock' and use DiD model to estimate causal impact

$$Y_{i,t} = \alpha_t + \beta_1 Female_i + \beta_2 PostMeno_t + \beta_3 Female_i \times PostMeno_t + \delta X_i + \epsilon_{i,t}$$

Empirical Work

Identification: Strategy 2

- Exploit Quasi-Natural Experiment: Women's Health Initiative study (2002)
 - Abruptly halted, concluding HRT increased risk of heart disease, cancer & stroke
 - Significant decline in HRT usage (women forgoing treatment to relieve symptoms)
- Balanced panel: (N=2,411 Women) from Life History Data (collected in Wave 3), observing menopause status in years before & after
- Exogenous 'shock' to HRT use: estimate causal effects of increased/unremediated menopausal symptoms on selfemployment propensity

```
SelfEmployed_{i,t,a,r} = \alpha_t + \gamma_a + \theta_r + \beta_1 Treated_i + \beta_2 PostWHI_t + \beta_3 Treated_i \times PostWHI_t + \delta X_i + \epsilon_{i,t,a,r}
```

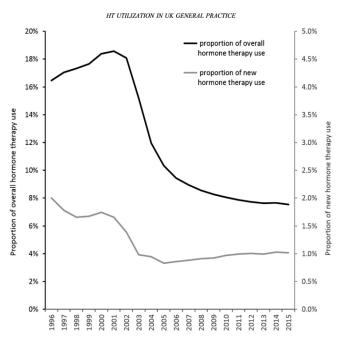



FIG. 1. Proportion of overall and new hormone therapy use in the general UK female population from 1996 to 2015. Numeric values corresponding this figure can be found in Supplemental Digital Content 2, http://links.lww.com/MENO/A385.

Reliable Causal Inference

DiD 1	DiD 2	Steps for Reliable Causal Inference
		(Atanasov & Black, 2016 & 2021)
$\overline{\checkmark}$	$\overline{\checkmark}$	Assess / Defend Shock Exogeneity After WHI announcement, what is the best T&C grouping?
\checkmark	\checkmark	Construct Treated & Control Groups
\checkmark	$\overline{\checkmark}$	Collect Covariates
\checkmark	\checkmark	Check Covariate Balance / Common Support How best to check parallel
\checkmark	\checkmark	Confirm Shock Strength trends, with staggered 'Treatment'?
\checkmark	\checkmark	Check for Pre-Treatment Parallel Trends
\checkmark	$\overline{\checkmark}$	Defend "Only Through" Condition
	$\overline{\checkmark}$	Power Analysis Reducing sample in steps above
		Model Estimation results in lower power – what to do?

Next Steps

- Methods to address 'issues' in steps to reliable causal inference
- For DiD1 (unbalanced panel)
 - Two Way Fixed Effects (TWFE) model
 - Compare to latest research on DiD with staggered treatment timing (Freedman et al, 2023)

THANK YOU

Questions & Feedback

References

Ambikairajah A, Walsh E, Cherbuin N. (2022) A review of menopause nomenclature., Reprod Health.;19(1):29

Atanasov, V.A. and Black, B.S., 2016. Shock-based causal inference in corporate finance and accounting research. Critical Finance Review, 5, pp.207-304

Atanasov, V. and Black, B., 2021. The trouble with instruments: The need for pretreatment balance in shock-based instrumental variable designs. Management Science, 67(2), pp.1270-1302

Bazeley, A., Marren, C & Shepherd, A, 2022. Menopause and the Workplace', Fawcett Society. Available at: <u>Download.ashx</u> (fawcettsociety.org.uk) (Accessed 19 December 2023)

Brewis, J., Beck, V., Davies, A. and Matheson, J., 2017. The effects of menopause transition on women's economic participation in the UK

Bryson, A., Conti, G., Hardy, R., Peycheva, D., Sullivan, A., 2022. The consequences of early menopause and menopause symptoms for labour market participation. Social Science & Medicine. 293

References

Crawford, S. L., Crandall, C. J., Derby, C. A., El Khoudary, S. R., Waetjen, L. E., Fischer, M., & Joffe, H., 2018. Menopausal hormone therapy trends before versus after 2002: impact of the Women's Health Initiative Study Results. Menopause (New York, NY), 26(6), pp588

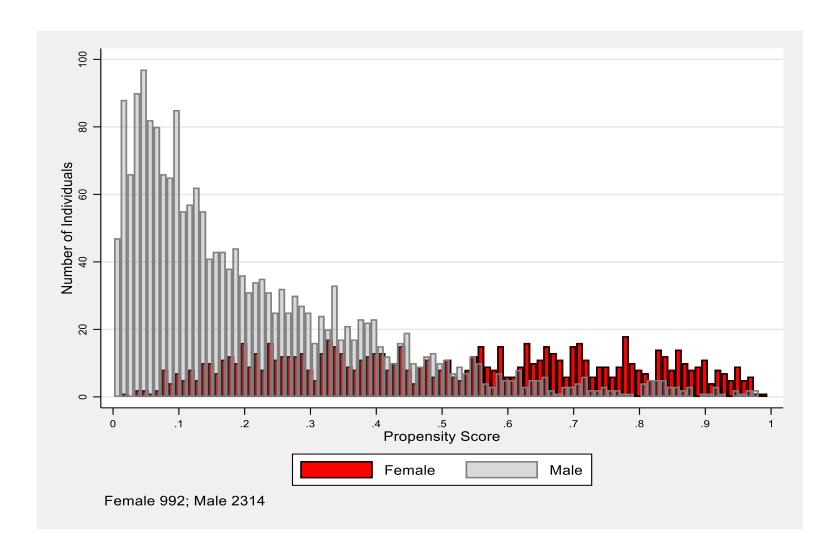
D'Angelo, S., Bevilacqua, G., Hammond, J., Zaballa, E., Dennison, E. M., & Walker-Bone, K., 2022. Impact of menopausal symptoms on work: findings from women in the Health and Employment After Fifty (HEAF) study. International Journal of Environmental Research and Public Health, 20(1), p295

Freedman, S., Alex Hollingsworth, Kosali Ilayperuma Simon, Coady Wing, and Madeline Yozwiak. Designing Difference in Difference Studies with Staggered Treatment Adoption: Key Concepts and Practical Guidelines. NBER Working Paper No. 31842, November 2023

Geukes, M., van Aalst, M.P., Nauta, M.C. and Oosterhof, H., 2012. The impact of menopausal symptoms on work ability. Menopause, 19(3), pp.278-282

Menon, U., Burnell, M., Sharma, A., Gentry-Maharaj, A., Fraser, L., Ryan, A., Parmar, M., Hunter, M., Jacobs, I. and UKCTOCS Group, 2007. Decline in use of hormone therapy among postmenopausal women in the United Kingdom. Menopause, 14(3), pp.462-467

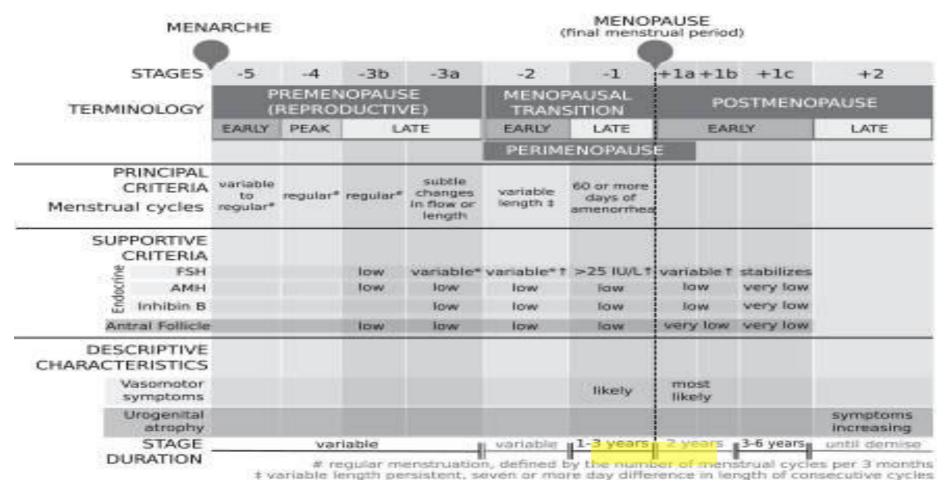
References



Pines, A., 2018, Women's Health Initiative and rate of hormone use: a study that impacted a whole generation, Menopause, 25(6), pp586-588

Verdonk, P., Bendien, E., 2022. Menopause and work: a narrative literature review about menopause, work and health. Work, 72(1), p1-14

Appendix: Propensity Score Matching



Common Support, based on

- Age
- **Ethnicity**
- Education (highest level)
- Socio-Economic Status (NSSEC)
- Marital Status
- Children
- Overall Health (self-reported)
- Smoking Status
- Region

Appendix: Menopause Definitions & Timeline

