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ABSTRACT

Advanzia Bank has leveraged predictive analytics and credit scorecards for risk assessment for over fifteen years.
In revolving credit, optimizing credit limit assignment is crucial for maintaining profitability. While reinforcement
learning (RL) has been applied across various domains, from deterministic environments to stochastic scenarios,
its adoption in banking remains limited. This paper explores the use of RL techniques to develop an optimal credit
card limit adjustment policy. The AI agent iteratively adjusts credit limits over time to maximize profitability.
The state space is continuous, incorporating key features such as Probability of Default (PD), Revenue, Loss,
Current Credit Limit, and Trend. The action space is discretized into predefined credit limit adjustments. PD
evolution over time is modelled using a survival model that estimates hazard rates at the customer level. Our
findings demonstrate that RL algorithms - specifically Double DQN, and Actor-Critic DQN - offer a viable,
data-driven alternative to traditional credit limit adjustment methods. We employ simulated data reflecting
real-world German credit card usage to evaluate this framework and discuss the insights gained. Additionally,
we compare the RL-based approach to conventional methods that frame credit limit assignment as a nonlinear
constrained optimization problem, highlighting the potential advantages of AI-driven methodologies in this domain.

Keywords: Credit scoring; Credit-limit assignment; Non-linear optimisation; Survival models; Reinforcement
learning

1. Introduction
Although reinforcement learning (RL) has been applied successfully to deterministic environments and to
stochastic problems in portfolio and operations management, its deployment in core banking processes remains
limited. Only a small number of studies, most notably Singh et al. [1] examined RL within credit-risk management,
and even fewer addressed the specific task of adjusting revolving credit lines.

The present study develops and evaluates two agents, namely a Double Deep-Q-Network (DQN) and an Actor–
Critic DQN, tailored to the credit-limit-management setting. Each agent learns policies that satisfy business
constraints while maximizing expected portfolio profit. Training stability and sample efficiency are enhanced
through target-network synchronization, prioritized experience replay, and reward-shaping techniques. In the
current discrete action space, on ten pre-defined “limit-ladder” buckets, the Double DQN offers a tractable
and robust solution; however, should future product requirements necessitate continuous limits, risk-aware
regularization, or non-stationary deployment, Actor–Critic variants such as PPO (Proximal Policy Optimization)
[2] or SAC (Soft Actor Critic) [3] are expected to yield performance gains despite their greater training variance.

Prior literature on limit management is sparse. Alfonso-Sánchez et al. (2024) [4] survey earlier contributions,
highlighting the absence of an industry standard for periodic limit adjustment and noting that most studies
neglect the revolving nature of credit-card exposures and the provisioning rules imposed by IFRS 9. However,
methodologies for subsequent limit revisions remain under-explored.

To incorporate forward-looking measures of credit risk, the proposed framework embeds an application or
behavioral-scoring component. Any statistical or machine-learning survival model trained in demographic, usage,
and payment-history variables can be employed to generate customer-level hazard rates, which form part of
the agent’s state representation. Offline learning is conducted within a simulator that links limit decisions to
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utilization, default, and recovery through a sequence of user-defined functions calibrated on historical data. The
training dataset reflects the behavior of sub-prime and near-prime German credit-card holders, characterized by
annualized charge-off rates of approximately 5–7 % and cumulative vintage defaults of 10–15 %.

For each customer, the agent selects between two actions, retaining the current limit or increasing it. The
optimization objective balances revenue uplift against higher impairment charges, thereby aligning with the
adversarial goals identified by Alfonso-Sánchez et al. [4]. The continuous state vector comprises probability of
default, expected revenue and loss, current limit, and utilization trend. Through iterative interaction with the
simulator, the agent converges on a policy that maximizes expected profit over a 24-month period.

The performance of the learned policy is benchmarked against a conventional non-linear constrained-optimization
approach. This comparative analysis serves to assess the incremental value of RL and to motivate further
research into its applicability across other credit products and jurisdictions.

The remainder of the paper is organized as follows: Section 2 introduces the fundamentals of reinforcement
learning and formulates the credit-limit adjustment problem within an RL framework. Section 3 describes the
dataset, outlines the construction of the simulation environment, and specifies the algorithmic configuration and
process flow for the DDQN agent. Section 4 presents the corresponding architecture of the AC Agent. Section
5 reports training results for both agents and compares their learned policies against an optimization-based
benchmark. Section 6 focuses on model validation and techniques to mitigate overfitting. Last, Section 7
discusses the study’s limitations and concludes with suggestions for future research.

2. RL Fundamentals & Provisioning for Revolving Credit
2.1 Background
Reinforcement learning (RL) seeks to discover a policy that maximises the agent’s expected cumulative reward
through sequential interaction with an environment [5]. This objective differs fundamentally from supervised
learning, whose goal is to approximate a fixed mapping between input features and target labels. By emphasising
trial-and-error search and delayed feedback, RL is uniquely suited to dynamic decision-making tasks.

Early milestones highlight RL’s potential in complex deterministic domains: DeepMind’s AlphaGo system, for
example, combined tree search with deep RL to defeat the reigning Go world champion in 2015 [6]. Subsequent
work by Mnih et al. (2015) [7] introduced the Deep Q-Network (DQN), which integrates Q-learning with
convolutional neural networks and achieved human-level performance on 49 Atari 2600 games. As algorithms
have matured, researchers have increasingly targeted stochastic settings that mirror real-world uncertainty
[8]. In operations management, Yang et al. [9] employed deep RL to design a cloud-based pricing system for
perishable goods, demonstrating lower food waste and higher profits through quality-dependent price updates
and information disclosure.

Interest is now spreading to financial services. RL formulations have been proposed for the loan-acceptance
threshold [10], dynamic premium adjustment in motor insurance [11] , and fraud detection [12]. These studies
used tabular or other traditional RL techniques rather than modern deep architectures; nonetheless, they
illustrate the promise of RL for data-driven decision support in banking and insurance.

2.2. Reinforcement Learning
Reinforcement learning is part of machine learning. Agents are self-trained in reward and punishment mechanisms.
The goal is to take the best possible action or path to maximise rewards and minimise punishment by taking
observations in a specific situation. It acts as a signal for positive and negative behaviours. Essentially an agent
(or several) is built that can perceive and interpret the environment in which operates; furthermore, it can take
actions and interact with these actions.

The mathematical foundation of an RL problem arises from a Markov decision process (MDP), which consists of
a set of states S, an action space A, a reward function r : S ×A → R, with r(s, a) representing the numerical
output given by the selection of action a ∈ A when the observed state is s ∈ S, and a transition probability
function P: S × A × S → [0, 1], where P (s′ | s, a) represents the conditional probability of transition to state s′

after the action a has been taken in state s.

Overall, if the MDP is episodic and involves discrete time steps, in At each step n, the agent observes a state
sn ∈ S and, based on this state, selects an action an ∈ A. In our case we are interested in identifying limit
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Figure 1: Key Components of Reinforcement Learning — Kdnuggets

policies that maximise profitability 24 months ahead, corresponding to discrete time steps. Subsequently, the
agent receives a reward rn, for the action an; after that, it observes the following state sn+1.At step n, the
agent’s objective is to find a policy π : S → A that maximises the total expected return Gn, according to the
following equation:

Gn =
N∑

k=n

γk−n rk (1)

where rk is the reward at step k and γ ∈ [0, 1] is the discount factor. Larger values of γ indicate that the agent is
more interested in long-term rewards; if γ = 0 the agent is myopic because it only considers immediate rewards.

For the credit limit assignment problem, given that any limit change will bring about a change in credit risk,
considering the change in losses and subsequent provisions is a must. In general, credit card providers will have
more profit if the customers have high outstanding balances, however customers with bad payment behaviour
and higher debts will represent potential costs to the company from provisions alone (even if no arrears or very
limited arrears occur) and since the balances are dependent on the credit limit, adequate decision over the latter
is critical. In our case the reward

rk =
m∑

i=1

k∑
j=1

(
Revij(·)− Lossij(·)

)
(2)

with m number of customers in the portfolio.

To solve this optimization problem, the temporal difference (TD) learning [13] attempts to estimate the return
when the state is s and the persuaded policy is π. In particular, the Q-learning algorithm [14], which is in the
category of TD-learning and has been widely used, estimates the action-value function Qπ(s, a), defined as the
following:

Qπ(s, a) = Eπ[ Gn | sn = s, an = a ] (3)

Intuitively, this function indicates the quality of selecting the action c in the state s. In addition, if Q∗

represents the optimal action-value function, the Bellman optimality equation states the following:

Q∗(s, a) = Eπ

[
rn + γ max

an+1
Q∗(sn+1, an+1)

∣∣∣ sn = s, an = a
]

(4)

and based on (4), the update equation in the Q-learning algorithm is given by:

Qπ(sn, an) ← Qπ(sn, an) + α
(
rn + γ max

an+1
Qπ(sn+1, an+1)−Qπ(sn, an)

)
(5)

where α > 0 is the learning rate. To apply Q-learning, it is necessary to balance exploration and exploitation of
the actions. Therefore, a ε-greedy policy is introduced; that is, with probability ε a random action is selected,
and with probability 1− ε one action with the highest value of Q is preferred.

This algorithm is categorized in the off-policy class because for the estimation of the Q action value in the
following state, one of the actions with the maximum value is considered rather than the output from the
ε-greedy policy. Off-policy methods like Q-learning can reuse experience collected under any behaviour policy,
even from another agent, because the learning target is decoupled from the data-collection policy. This makes
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them powerful but also means they must be designed carefully to remain stable when the two policies differ
greatly.

It is important to note that the Q-learning algorithm, equation (5), includes the estimation of
maxan+1 Qπ (sn+1, an+1).This condition produces an overestimation problem because to estimate a
maximum value, the greatest number of estimated values is employed, which can lead to a positive bias, also
known as maximization bias [5]. Therefore, the idea of Double Q-learning has emerged; instead of using the
same Q-table to select the action with the maximum value and its corresponding estimate, the experiences are
divided between learning two independent policies, Q1 and Q2. In the case of Deep Q-Learning via the target
and policy networks. Double DQN leverages two networks; a policy network and a target network to decouple
action selection from value estimation. The update equation now becomes:

Q(s, a) ← r + γ Qtarget

(
s′, arg max

a′
Qpolicy(s′, a′)

)
(6)

This is the Double Q-Learning Update Rule, where the Q-value for a given state s and action a is updated to
reflect the agent's learning based on rewards and future state-action values.

Standard Reinforcement Learning algorithms often struggle when state or action spaces become very large.
Representing the value function or policy explicitly for every state (or state-action pair) becomes computationally
infeasible. Function approximation offers a solution, but simple linear approximators lack the capacity to capture
the complex relationships present in many challenging problems, such as learning from raw pixel data in video
games or robotic control from high-dimensional sensor inputs.

Deep Q-Networks (DQN) marked a significant step forward by integrating deep neural networks with the
Q-learning algorithm. Instead of a table or a linear function, DQN uses a neural network to approximate the
optimal action-value function, Q∗(s, a).

3. The Double Deep Q-Learning Agent Design

3.1 Simulated Data Input
The simulated environment emulates realistic credit portfolio dynamics by modelling customer behaviour through
three key components: the probability of default (PD), utilization rate, and recovery rate. These components
are derived from forward-looking data and incorporate stochastic and nonlinear behaviours to create a diverse,
risk-sensitive decision landscape for reinforcement learning agents.

3.1.1 Probability of Default (PD):

The probability of default (PD) quantifies the likelihood that a customer will default within a given time step. It
is dynamically computed using a time series of hazard rates, which reflect evolving credit risk over time.

Formally, the hazard-rate function h(t) is used to compute the survival probability

S(t) = exp
(
−

∫ t

0
h(u) du

)
,

where S(t) denotes the probability that a customer has not defaulted by time t. A customer is deemed to have
defaulted if their PD exceeds 0.5. This threshold is used as a classification rule in the simulation environment.
Variability in PD across different customer states plays a critical role in shaping the learning environment. When
PD exhibits significant variation across the state space, it introduces diverse value gradients that incentivize the
agent to explore both low-risk and high-risk profiles. Conversely, a static or highly predictive PD signal may
lead to premature policy convergence, reducing exploration and adaptability. As such, strong PD features are
crucial for enabling risk-sensitive policy learning, for example appropriately limiting credit to customers with
elevated default probabilities. The hazard rate curves used in the simulation are designed to reflect the empirical
behaviour observed in sub-prime and near-prime credit portfolios, including a duration-based default likelihood
of approximately 16% (see figure 2).

3.1.2 Utilization Function
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Figure 2: Hazard rates for a sample of customers over a 24-month period

The utilization rate models how much of a customer’s available credit is expected to be used, incorporating both
structural and behavioural components. The rate is defined as:

UtilizationRate = clip
(
a ∗

(
Credit Limit
Max Credit

)b

∗
(
1 + c ∗ PDd

)
+ ε, 0, 1

)
(7)

Where a is a baseline utilisation factor (e.g. 0.4), b is a nonlinear scaling exponent that controls growth with
respect to the credit limit (e.g. 0.5), c is a weight on the PD component (e.g. 0.3), d emphasises the impact
of high PDs (e.g. 2), and ε ∼ N (0, 0.05) adds Gaussian noise, simulating behavioural randomness. The clip
function ensures that the utilization rate remains bounded in the interval [0,1], preventing unrealistic credit
usage predictions. This model captures key behavioural trends, such as increasing usage with greater credit
limits and higher risk sensitivity for sub-prime borrowers, who often exhibit higher utilization under financial
stress.

3.1.3 Recovery Function

The recovery rate determines the proportion of outstanding balances that can be recovered in the event of default.
It is inversely related to the granted credit limit, capturing the intuitive notion that higher credit exposures are
harder to recover. The recovery rate is computed using the formula

RecoveryRate = max
(

0, 1− log
(

Credit Limit+1
)

Recovery Factor

)
(8)

This logarithmic relationship ensures diminishing recovery potential with increasing credit limits, thus simulating
higher expected losses for riskier lending decisions. The function is bounded below at zero to avoid negative
recovery values. In the study a recovery factor of 20 used.

3.2 State representation sn

State sn represented with a state vector having five features:

sn =
[

PD, utilisation, 3-month utilisation trend, limit
max_credit , 12-month cum-PD

]
(9)

• PD is the model’s current estimate of the likelihood that the customer will default, a direct risk measure
able to reflect changes in risk profile quickly if dynamic. Certainly, quality is only as good as the model
producing the PD and depending on the model, may obscure why PD changed.

• Utilisation Ratio, as given in 3.1.2 above. As a highly dynamic feature, utilisation can create rich state
variability, encouraging the agent to test different actions under varying usage levels. However, it may lead
to over-exploration in noisy states if not smoothed or combined with trend features.
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• 3-month utilisation trend based on

Trend3M =

2∑
i=0

(xi − x)
(
URt−2+i −UR

)
2∑

i=0
(xi − x)2

(10)

returning positive when utilisation is increasing (Trend3M >0), indicating worsening credit risk, zero when
utilisation is stable (Trend3M =0), and negative when utilisation is decreasing (Trend3M <0), indicating
improving credit behaviour. The trend helps distinguish between states that have the same current
utilisation but different historical trajectories, enabling smarter exploration by the agent. Because trend
features change more gradually than point-in-time metrics, they contribute to more stable policy learning
and allow early detection of deteriorating behaviour, even before a spike in PD occurs. This supports
preventative action strategies in credit decisioning.

• limit
max_credit , adding contextual memory, same utilisation ratio may mean different things depending on
past limits. Low variability in this feature may limit exploration unless limit changes are frequent. Reflects
credit trustworthiness trajectory, suitable for shaping long-term behavioural incentives.

• 12-Month Cumulative PD, it adds historical context, guiding the agent to explore state-action pairs with
sustained risk exposure. May suppress exploration of customers with long-term high risk unless there’s a
clear reward opportunity. Can amplify penalties or modify discount factors for high cumulative PDs to
promote conservative policies. Encourages risk-averse strategies that account for past behaviour, not just
current risk.

3.3 Reward function rn

To define this function, we consider the expected profits as in equation (2) after the company has selected the
actions. In this case, the expected profit E(Profitn|an) in step n after performing the action an is the difference
between the expected revenue and losses, as follows:

rn = E
[
Profitn | an

]
=

m∑
i=1

n∑
j=1

(
Revij(·)− Lossij(·)

)
(11)

where Revin =
∑n

j (CLij ∗ URij ∗ (1 − PDij ) ∗ APRi)

and Lossin =
∑n

j (CLij ∗ URij ∗ PDij ∗ (1 − RRij ))

for the i -customer at time step n after performing the actions a1 to an up to that point.

CLij is the credit limit assigned on i -customer at time step j performing action aj . PDij , URij and Recovery
Rate, RRij described in detail in section 3.1. For the training of the agent different limits applied depending on
the action taken, producing different UR, and RR values with simulation parameters resembling those from a
subprime, to near-prime portfolios (default unit rate , UR and recovery factor). The actual reward is scaled
R= tan h

(
rn

2000
)

to prevent extreme values from dominating learning, keeping the Q-values stable, so improving
convergence of the neural network. Function tanh grows quickly near 0 but saturates as the input grows.

3.4 Action Space an

Each customer is assigned one action drawn from a discrete set of ten credit-limit multipliers:

Multipliers = [1.00, 1.04, 1.09, 1.13, 1.17, 1.22, 1.26, 1.30, 1.35, 1.40] (12)

Rounded to two-decimal precision, these values form an action ladder that moves in equal steps from no change
(1.00 ×) up to a 40 % increase (1.40 ×). Let Xi,t ∈ [100, 10000] denote the credit limit of customer i at time t,
with initial limits sampled as Xi,0 ∼ Unif(100, 500). same for all agents and the benchmark.

At each decision point the agent may either leave the limit unchanged or raise it by applying one of the multipliers
in (12). The resulting action space is multi-discrete, an integer vector of length m, whose components take values
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in {0,. . . ,9}. Actions are chosen using a pure ε-greedy policy; no temperature-scaled soft-max exploration is
employed.

3.5 Neural Networks
The policy or “online “network is the workhorse of the Double DQN agent. It receives the five-dimensional state
vector, processes it through two fully connected hidden layers of 128 ReLU-activated units each, and then splits
into a duelling architecture.

One head produces a single scalar that represents the state-value V(s), capturing how good it is to be in the
current state regardless of action, while the other head outputs an |A|-dimensional advantage vector A(s, a) that
measures how much better or worse each action is relative to the average action in that state. The network
combines these two estimates with the standard zero-mean trick, computing

Q(s, a) = V (s) +
(

A(s, a)− 1
|A|

∑
a′

A(s, a′)
)

(13)

so that only the relative differences among actions, not their absolute scale, need to be learned.

During training the policy network’s parameters are updated by gradient descent on a clipped Huber loss
(Smooth L1 loss, see eq. 16 section 3.8) between its Q-values and a target that comes from the separate target
network. During interaction with the environment, it is this policy network that selects actions, typically through
an ε-greedy rule, and its parameters change at every gradient step, making it the agent’s current estimate of the
action-value function.

The target network is an identical copy of the policy network in structure, down to the duelling heads, but it
plays a different role: it provides the relatively stationary targets that the policy network learns toward. After
each policy update, the target network is not trained directly; instead, its parameters are slowly moved toward
the policy parameters through Polyak averaging (see eq. 15 section 3.8) with a small τ of about 0.005, so that it
effectively tracks a running exponential average of recent policy networks over roughly two hundred steps.

In computing the learning target y = r + γ ·Qtarget (s′, argmaxa′Qpolicy (s′, a′)) the DDQN formulation uses the
policy network to choose the maximizing action in the next state but the target network to evaluate that action’s
value, breaking the positive-bias feedback loop that plain DQN suffers when the same network both selects and
evaluates. This decoupling, together with the duelling decomposition within each network, makes training more
stable and sample-efficient, especially in states where many actions have similar consequences.

3.6 Learning Rate Scheduler
For this agent we use PyTorch’s StepLR scheduler, which reduces the learning rate by a fixed factor (gamma) γ,
with step size = 100 and γ = 0.8. So, the learning rate schedule looks like:

LRt = LR0 γ

⌊ t
100

⌋
(14)

The term LR0 represents the initial learning rate i.e., the learning rate at the very start of training, before any
decay is applied. The equation implies that the scheduler is stepped once every 100 training episodes, not in
every optimizer step. The choice of the actual step size aligns with the evaluation interval, not per gradient
update. A LR0=3e-4 is passed when the agent is instantiated. This is the starting point from which the learning
rate will be reduced by a factor of γ = 0.8 every 100 steps of the scheduler.

3.7 Replay sampling
Replay sampling is used in Deep Q-Learning to store past experiences, i.e. the transition tuples (s, a, r, s′),
and to sample batches of them during training. The transition tuples are what gets stored in the replay buffer,
and it’s what the agent samples during learning to compute its TD error and update the Q-network. Its purpose
is to help stabilizing learning by avoiding correlated updates and promoting experience reuse.

Replay sampling is uniform FIFO (all transitions are sampled with equal probability with oldest transitions
overwritten first once the buffer is full); Prioritised Experience Replay and importance-sampling weights are not
implemented.
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3.8 The Double DQN Process Flow Chart
Deep Q-Learning proceeds in a cyclical two-phase routine. First, during the sampling phase, the agent interacts
with the environment, choosing actions and recording each transition (s, a, r, s′) in a replay buffer. Second,
in the training phase, the algorithm draws a random mini-batch of these stored experiences and updates the
Q-network by performing a gradient-descent step that minimises the temporal-difference loss. By alternating
between exploration-driven sampling and off-policy learning from the replay memory, the agent stabilises training
and improves data efficiency. The flow chart in figure 3 visualises this loop and the key operations inside each
phase.

Figure 3: DDQN Agent Process Flow Chart

The Pseudocode for the Double DQN agent algorithm is given in the appendix. Two things to note here relating
to the learning function in the algorithm.

• The method to gradually update the target network is the Polyak soft update used to improve learning
stability. In a Polyak soft update, the parameters of the target network are updated as a weighted average
of the current target parameters, and the current policy (online) network parameters. The update rule is
the following:

θtarget ← (1− τ) θtarget + τ θonline (15)

where θtarget are the parameters of the target Q-network and θonline the parameters of the current Q-network,
with τ ∈ (0, 1).

• The loss function measuring the discrepancy between the predicted Q-values and the target Q-values uses
Smooth L1 loss, also known as the Huber loss which combines MSE and MAE and is robust to noise. In
that case the loss function for the calculation of gradients is the following:
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LHuber(Q) = 1
N

N∑
i=1


1
2
(
Q(si, ai)− yi

)2
, if

∣∣Q(si, ai)− yi

∣∣ < δ,

δ
(
|Q(si, ai)− yi| − 1

2 δ
)
, otherwise.

(16)

Where yi is the target Q-value (i.e., the TD target), behaving like MSE when the TD error is small (i.e.,
inliers), and as MAE (linear) when the TD error is large (i.e., outliers).

4. The Actor–Critic DQN Agent Design

4.1 Actor-Critic Agent Process Flow Chart
Double DQN is simpler and more stable early, suitable for problems where replay helps and convergence speed
matters. On the other hand, Actor-Critic is more adaptive, supports fine-grained policy learning, and is better
at managing variance and long-term strategy, however, requires careful tuning (e.g. entropy, advantage scaling).
State representation, reward function and action space remain the same. However, the Actor-Critic agent learns
a softmax-based policy and value function using GAE [15] and PopArt-style normalization [16], optimizing
long-term profit through on-policy updates with entropy-regularized exploration and cosine-decayed learning
rates.

The Actor-Critic works by combining two separate neural networks: the actor, which decides what action to take
(such as how much to increase a credit limit), and the critic, which estimates how good the current situation (or
“state”) is. During training, the agent interacts with a simulated environment where it observes a customer's
risk profile and credit behavior, chooses an action, and then receives a reward based on the resulting profit
or loss. Over time, it collects a full episode of these interactions (a trajectory) and uses this data to improve
both networks. The critic learns to better estimate the future value of each situation, while the actor learns to
choose actions that lead to higher rewards. To improve stability, the model uses a technique called Generalized
Advantage Estimation (GAE), which helps the agent better judge the long-term benefit of its actions, and
PopArt-style normalization, which keeps the learning process steady even when reward scales vary. Exploration
is controlled using a temperature parameter, in this implementation early in training the agent explores by
trying different actions more randomly, and later becomes more focused as it learns which actions work best.
This balance of learning from both policy and value predictions makes the Actor-Critic agent more adaptive and
effective at solving complex credit decision problems.

The flow chart in figure 4 visualizes the process and the key operations inside each phase. The Pseudocode for
the AC agent algorithm is given in the appendix.

Several things to note with this design.

4.2 Stochastic Policy
The actor network outputs logits for each action, which are passed through a softmax function to form a
probability distribution over actions. Actions are then sampled stochastically, allowing for natural exploration.
A logit is the raw (unnormalized) output of a neural network before applying a softmax to produce a probability
distribution. The policy, i.e. the probability of choosing action a given that the agent is in state s is given by

π(a | s) =
exp

(
za/τ

)∑
a′

exp
(
za′/τ

) (17)

where za is the logit for action a, and τ is the temperature controlling exploration.

4.3 Actor & Critic Separation
The architecture maintains two networks: the actor, which learns a policy π (a | s), and the critic, which estimates
the state value V(s). This separation allows the agent to independently optimize action selection and state
evaluation. It estimates the expected total reward the agent can collect starting from state s, if it follows π:
V (s) ≈ Eπ [

∑
t γtrt]. The critic helps reduce variance in the actor’s updates.
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Figure 4: Actor–Critic Agent — Process Flow Chart

4.4 Generalized Advantage Estimation (GAE)
GAE is used to compute smoothed advantage estimates, reducing the variance of policy gradients while retaining
bias control. It mixes n-step returns using a decay parameter λ. The advantage GAE estimate is given by

AGAE
t =

∞∑
l=0

(γλ)l
δt+l

where δt = rt + γ V (st+1)− V (st) is the TD error.

4.5 PopArt-lite Normalization
To stabilize critic training, the agent maintains a running mean and variance of the return targets and uses them
to normalize value predictions. Unlike full PopArt, this variant does not rescale network weights: Ĝt = Gt−µt√

σ2
t +ϵ

,

where Gt is the return, µt and σ2
t are the running mean and variance.

4.6 On-Policy Learning
The agent learns from the actual trajectories it generates, rather than storing past experiences. Each update
reflects the current policy behaviour, which can adapt rapidly to new learning signals. No buffer or off-policy
correction is used, learning is strictly based on the trajectory from the latest episode.
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4.7 Entropy Bonus
An entropy term is added to the actor’s loss to encourage exploration by penalizing confident (overly certain)
policies. This keeps the policy distribution spread out, especially early in training.

Lactor = −E
[
log π(a | s) ∗A(s, a)

]
− β ∗ H

[
π

]
(18)

where H[π] is the entropy of the policy and β is a decay-weighted coefficient.

4.8 Cosine Learning Rate Scheduler
The learning rate for both actor and critic decays over time using a cosine annealing schedule, allowing for large
steps early and finer updates later.

αt = α0 ·
(

0.5 + 0.5 cos
(

π · t

T

))n

where α0 is the initial LR, t is the current step, and T is the total schedule length.

4.9 Temperature Decay
The softmax temperature τ starts high to promote exploration and decays linearly, making the policy more
deterministic over time.

τt = max (τmin, τ0 · (1− t/Tdecay))

This gradually shifts the agent from exploration to exploitation.

4.10 Actor and Critic Neural Networks
The Actor Network (Policy Network) chooses actions by estimating the policy π (a | s) on a 5-dimensional state
vector per customer. Uses fully connected layers:

Input (5) →ReLU (64) →ReLU (32) →Layer Norm →Output (10 logits)

a set of logits (one for each action), which are passed through a softmax to produce action probabilities.

The Critic Network (Value Function Approximator) estimates the state value V(s), used to evaluate how good a
state is. Uses as Input the same 5-dimensional state vector and fully connected layers:

Input (5) →ReLU (64) →ReLU (32) →Output (1 scalar)

Outputs a single scalar value V(s), representing the expected return from state s. Both networks are optimized
independently. The critic uses Smooth L1 loss (Huber loss, eq. 16 section 3.8) between predicted and normalized
returns. The actor is updated using advantage-weighted policy gradients, with an entropy bonus for exploration.

5. RL Training Results & Nonlinear Programming Benchmark

5.1 Benchmarking
To benchmark the reinforcement learning agents developed in this work, we implemented a piecewise-linear
mixed-integer linear programming (MILP) model that optimally allocates credit limits under identical portfolio
conditions, including initial limits. Validating agentic AI systems such as Actor-Critic or Double DQN agents
is particularly challenging due to their non-deterministic policies, sequential decision dependencies, and the
influence of reward shaping. A MILP-based benchmark provides a deterministic and globally optimal policy
under the same customer dynamics, serving as a quantitative standard. This comparison helps reveal whether
the agent’s policies are converging toward economically sound decisions and highlights any blind spots in learning
or reward alignment.
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The MILP formulation captures customer-by-customer credit decisions across time using piecewise-linear (PWL)
revenue and loss functions, driven by the same simulated default probabilities (PDs), APR, utilization and
nonlinear recovery curves. The PWL approximation is encoded with SOS2 constraints and binary variables,
allowing nonlinear behaviours to be captured with linear expressions. In the MILP benchmark, SOS2 constraints
restrict each piecewise-linear segment so that at most two adjacent breakpoint variables are positive, ensuring
the model follows the correct segment of revenue or loss curve while keeping the formulation linear.

While the MILP approach offers high fidelity and interpretability, it is also computationally intensive. Each
PWL function introduces a set of binary variables per customer per time period. As a result, even for a modest
portfolio of a few hundred customers over multiple months, the number of integer decision variables grows
rapidly, making the model time-consuming to solve. In practice, this can lead to solver runtimes of several hours,
depending on the precision and solver configuration. Despite this, the MILP remains valuable as a benchmarking
tool precisely because of its rigor and exactness.

Piecewise-Linear MILP Formulation

Let:

Xi,t ∈ [100, 10, 000]: credit limit for customer i at time t

Revi,t (Xi,t) , Lossi,t (Xi,t) : piece wise linear functions defined over break points {x1, . . . , xK}

The MILP formulation:

max
X, Rev, Loss

N∑
i=1

T∑
t=1

(Revi,t − Lossi,t)

s.t. Xi,1 = xinit
i,1 ∀ i

Xi,t ≥ Xi,t−1 ∀ i, t > 1 (no credit reduction)

Xi,t ≤ k Xi,t−1 ∀ i, t > 1 (bounded growth, k ∈ [1, 1.4])

Revi,t = PWLrev(Xi,t) ∀ i, t

Lossi,t = PWLloss(Xi,t) ∀ i, t

SOS2 constraints on PWL terms with binaries

MILP supports detailed, non-convex relationships like revenue saturation or risk discontinuities using PWL
approximations, yielding a transparent, audit-ready decision policy aligned with business constraints. Unlike
smooth NLP solvers that may return locally optimal solutions, MILP guarantees a global optimum within solver
tolerance. The goal was to establish a strict upper bound on achievable profits given the same environment,
against which RL agent performance can be quantitatively validated.

k- from the bound growth constraint above is tied to the ladder, and we set k=1.40 to keep the optimisation
problem comparable to the RL agents’ action space. k makes the MILP’s growth-bound exactly match the
maximum single-period increase available to the RL agents. In other words, k imposes the same outer envelope
as the ladder, but it does not force the optimiser to use the discrete grid; it may choose any increase in [1,1.40].
To avoid adding extra binary variables (or an SOS1 set) so that restricting Xi,t to the ten specific multiples; the
current continuous bound is a fair but slightly more permissive benchmark.

5.2 DDQN Agent Training Results
The DDQN agent’s training performance was recorded over 500 episodes on 1,000 randomly selected customers
from the synthetic portfolio.

From figure 5 we can make several key performance observations. Looking at the Total Reward per Episode
graph (top left) the agent exhibits a clear and rapid learning curve in the early episodes, with total reward
per episode increasing sharply during the first 100. After this initial phase, the reward stabilizes around 0.65,
indicating consistent policy behaviour. The 25-episode moving average confirms convergence and policy stability,
suggesting that the agent has effectively learned an optimal or near-optimal credit-limit policy within a relatively
small number of episodes.
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Figure 5: Double DQN Agent — Performance Metrics

The Step Reward Distribution (top middle graph) is highly asymmetric and skewed toward positive values. Most
rewards fall in the range of 50–100, but a long tail of negative or near-zero values exists. This skew likely reflects
the outcome of both profitable and default-prone actions, showing that while profitable steps dominate, riskier
actions still occur. The agent has learned to navigate toward states with consistently positive outcomes.

The learning rate (top right graph) decays exponentially over the training episodes, as evidenced by the straight-
line decline on a logarithmic Y-axis. This strategy allows the agent to make larger learning updates early in
training, facilitating rapid exploration, while gradually reducing update size to stabilize convergence. The decay
appears smooth and consistent, supporting a well-structured learning process aligned with convergence observed
in the reward plots.

Average & Cumulative Rewards per Step (bottom left) plot shows that average per-step rewards start negative,
and this is due to the fact that most default happens at the fourth statement, so that early episodes were
dominated by suboptimal actions (e.g., over-extensions of credit leading to losses). However, the average reward
quickly transitions into strongly positive territory by step 10–15, while cumulative rewards grow steadily. This
highlights that the agent not only improved its decision quality but also sustained profitable behaviour over time.

The exploration rate ε graph (bottom middle) decreases linearly from 1.0 to 0.05 over 350 episodes. This gradual
reduction supports a balanced learning process: high randomness early on encourages broad exploration, while
the lower ε later promotes policy exploitation. The schedule aligns well with the observed convergence in episode
rewards and demonstrates that the agent had sufficient exploratory capacity early in training.

Last, the Profit vs Reward Correlation graph (bottom right) shows a nearly perfect linear relationship between
total profit and total reward per episode, confirmed by a Pearson correlation coefficient of 1.0. This indicates
that the reward function, scaled using tanh(profit/2000), is a faithful proxy for the economic objective. The
alignment confirms that the agent is not just optimizing abstract rewards but is directly learning to maximize
financial profit.

5.3 Actor–Critic Agent Results
The Actor-Critic agent was trained for 500 episodes on the same 1,000 randomly selected customers that were
used for the DDQN benchmark. Performance metrics shown in figure 6.

Total reward per episode plot (upper-left) shows that the Actor-Critic (AC) curve now vaults from near-zero
to ≈ 48 within 60 to 120 episodes, then stays pinned against that ceiling for the remaining 380 episodes. The
25-episode moving average (red line) is almost flat once the surge is over, confirming that volatility has been
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Figure 6: Actor–Critic Agent — Performance Metrics

squeezed out of the policy. DDQN (previous section) reaches its ceiling of ≈ 0.65 by ~100 episodes, so it stabilises
sooner. AC therefore trades a slightly longer warm-up.

The asymmetric histogram of the Step-reward distribution plot (upper-centre) is evidence of a healthy exploration-
exploitation cycle: high variance produces strong gradients, the critic learns to distinguish profitable from
unprofitable trajectories, and the policy keeps room for refinement instead of converging prematurely.

The Learning-rate schedule plot (upper-right) shows the cosine decay starting at 3× 10−4 and gliding to 1× 10−4

by ε ≈ 350, then holds. Because AC stops shrinking the LR too aggressively, it keeps head-room to adapt after
the big jump in limits around episode 120, a flexibility the exponentially decayed DDQN LR no longer has.

The orange curve in the Average & cumulative reward per step plot (lower-left) starts negative, flips positive
by step ≈ 4, and then accelerates sharply until step ≈ 10, after which its slope flattens. That hockey-stick like
profile is the footprint of the critic discovering the break-even limit; once the network figures out how high it can
safely raise credit, every subsequent step in the month yields progressively better returns until the available
head-room is exhausted. The steepest segment (steps 6-10) marks the high-learning-rate window. Policy updates
made earlier in the month are immediately rewarded a few steps later, so gradients stay large and the actor
quickly pushes limits upward.

The grey cumulative curve is almost piece-wise linear after step 10, meaning each additional step is delivering
a fairly constant marginal return. Those dynamics are a healthy sign, exploration is front-loaded and quickly
distilled into a consistent, profitable routine rather than drifting or oscillating late in training.

In the Exploration schedule plot (lower centre) temperature (τ) is annealed linearly from 1.0 → 0.05 over the
first 250 episodes and then freeze. Softmax sampling lets AC keep graded randomness all the way to τ = 0.05,
whereas DDQN’s ε-greedy explores or exploits with a hard switch. This smoother decay is a likely reason AC
avoided the high early losses that DDQN incurred.

Reward–profit alignment plot (lower-right) shows an almost perfect Pearson correlation r = 0.997 between the
agent’s episode-level performance signal and the actual euro profit (back-transformed). In practice that means
episodes that the algorithm considers good are for the majority of the time those that truly deliver more profit.

5.4 Benchmarking Dynamic Credit-Limit Strategies
The subsequent consolidated dashboard in figure 7 compares raw cash metrics (limit, revenue, loss, profit)
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allowing for direct, like-for-like comparisons.

Figure 7: Pyomo MILP Outcomes Compared to DDQN and Actor–Critic

Overall, the 24-month back-transformed profit picture indicates that the Credit-limit trajectory plot (upper-right)
all three policies step cautiously for the first 6–7 months. Pyomo’s deterministic optimizer lifts limits fastest,
crests at €10 k. Actor-Critic ends at ~€8.8 k, DDQN at ~€8.4 k, a 5 % gap that explains most of the revenue
delta later.

In the Revenue vs Loss plot (lower-left) the Actor-Critic’s red loss curve spikes higher than DDQN’s because its
exploration occasionally grants big limits to high-risk accounts; those write-offs vanish after month 12. DDQN
incurs losses too, but the peaks are ~40 % lower and fade a month earlier. DDQN breaks even around month 8;
AC needs ~10 months. The earlier crossover gives DDQN a head-start in the 24-month sum. Revenue plateau
by month 12-13 both RL policies hit €28–30 k revenue per month, ~10 % less than that of Pyomo.

Translating each agent’s reward series back into euros (undoing the √ ·100 scaling used by AC and the tanh /2000
clipping used by DDQN) a clearer picture emerges:

• Steady-state Profit

From month 12 onward the Actor-Critic policy delivers about €27 k profit per month, whereas DDQN settles at
roughly €24 k / month. That is ≈ 13 % more cash-flow once both agents are fully ramped up.

• Cumulative 24-month Profit

Because AC spends its first few months digging out of a deeper exploration-loss trough, the 24-month totals
currently stand at €312 k (AC) vs €349 k (DDQN). DDQN’s faster early stabilization still leaves it slightly
ahead on this finite horizon, even though AC is the stronger earner once the policies have matured. So, after
reversing the reward mappings and looking only at euro profits, AC proves more lucrative in the long run, while
DDQN retains a small edge on the full-period total thanks to its quicker start. If the horizon were extended
beyond 24 months, Actor-Critic’s higher monthly run-rate would overtake DDQN’s cumulative lead.

From Profit plateau plot (lower-right) the profit-based comparison illustrated below distinguish between rump
up and mature month period
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Table 1: Profit-based comparison, DDQN and Actor–Critic agents
Pyomo (benchmark) Actor–Critic Double DQN

Profit at steady state
Monthly profit ≈€31 k ≈€27 k ≈€24 k
Gap closed 100 % 85–88 % 75–78 %
Profit over 24-month window
Cumulative profit €458 k €312 k∗ €349 k

Double DQN with cumulative profit €349 k benefits from a quicker break-even, yet its lower ceiling keeps it
behind Pyomo and (in monthly terms at steady state) behind Actor–Critic.

Actor-Critic achieves €312 k, hurt by a deeper learning dip but already matching Pyomo’s marginal profit rate
after year 1. The cumulative profit for the AC agent needs an explanation.

Let m1 = 11 “ramp-up” months and m2 = 13 plateau months. Then

Total 24-m profit =
m1∑
t=1

profitt︸ ︷︷ ︸
lower / negative

+
24∑

t=m1+1
profitt︸ ︷︷ ︸

≈ €27 k×m2

Using the numbers behind the chart for the AC
Average profit in months 1–11 ≈ €(−2.7) k/month

Plateau profit in months 12–24 ≈ €27 k/month(
−2.7 k× 11

)
+

(
27 k× 13

)
≈ €312 k

In summary, the Actor-Critic (AC) agent pays a higher say tuition fee during its first year, roughly an additional
€3 k in monthly losses, because it experiments with bolder limits, yet that short-term cost buys it a superior
long-run policy. Once limits stabilise, AC’s ceiling sits only about 5 % below Pyomo’s but that small gap
compounds into a 10 % revenue and 12 % profit spread in its favour over DDQN. Pyomo still defines the efficiency
frontier, yet a properly tuned AC agent ultimately captures more than 85 % of that optimum, whereas DDQN
converges more quickly but to a permanently lower plateau. Consequently, organisations that prize immediate
cash-flow may prefer DDQN for a quick win, but those that value lifetime yield should invest in AC training, the
higher steady-state profits will overtake DDQN’s early lead and keep compounding thereafter.

6. Agents Validation
Temporal validation trains on early months and tests on later months for the same customers, showing whether
the agent stays profitable as market conditions change over time. Row-wise validation trains on one subset of
customers and tests on entirely unseen customers, revealing how well the policy generalises to new accounts.
Using both checks guards against over-fitting in the two directions that matter for deployment, future months
and new customers. Validation results are show below for the two agents.

6.1 DDQN Agent Validation
The Double-DQN agent converges quickly in the row test, stabilising around 0.90 profit/month and matching
that figure on unseen customers (+0.9), so it generalises well across the customer base. In the temporal test it
learns more slowly but still trends upward to ≈ 0.15− 0.16 profit/month, with a slightly higher hold-out point
(+0.20), indicating resilience to future market conditions. Overall, while absolute profits are modest compared
with the Actor-Critic runs, the DDQN policy shows consistent gains in both directions of drift, new customers
and later months, suggesting it is a sound lower-yield, alternative.
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Figure 8: DDQN Agent — Temporal & Row-based validation

6.2 Actor–Critic Agent Validation
Row-wise testing shows the Actor–Critic agent averaging ≈ 600 profit per month on the training customers,
with the ±1σ band indicating some seeds spike above 1 000 but the worst still stay positive. In other words,
performance is strong yet seed-sensitive. The single hold-out point from that run lands around +150 ± 130,
beating the do-nothing baseline (+0.9) by a wide margin but exposing a clear train-to-test drop. Five-fold CV
confirms it isn’t over-fitting, every fold’s box sits hundreds above baseline, with medians 320-520, meaning the
policy generalises to unseen customers, even if harder cohorts (e.g., fold 5) yield smaller but still solid gains. In
terms of temporal validation, not shown here, even in unseen months, the agent averages profit well above the
do-nothing baseline however, with notable run-to-run variability.

Figure 9: Actor–Critic Agent — Row-based validation

Overall, the Actor-Critic delivers far higher absolute profits, hundreds per month in both row-wise and temporal
tests but shows wider seed-to-seed scatter and a noticeable train-to-test drop, which CV shows it isn’t over-fitting.
Double-DQN earns only fractions of a unit per month, yet its row and temporal hold-outs closely match training
performance, indicating tighter generalisation at the cost of much smaller gains.

7. Concluding remarks and research directions

7.1 Concluding Remarks
Over the 24-month horizon, the mixed experimental design delivers a clean, quantitative benchmark.

DDQN converges within approximately 100 episodes, incurring the smallest write-off spike and becoming
cash-positive from month 8. Actor-Critic, on the other hand, requires an additional quarter of exploration and
incurs roughly €25,000 in extra early losses. However, by month 15, it overtakes DDQN in monthly profit and
continues to close the gap to the linear programming (MILP) frontier. This highlights the trade-off between
early learning cost and long-run gain.
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All three approaches face the same probability of default (PD) hump at 25% in month 4. The key difference
lies in how aggressively they choose to lift limits through it. A seemingly modest 5% gap in the final average
limit results in a 10–12% difference in monthly profit, demonstrating how small policy adjustments can quickly
compound over time. This suggests that limit-setting policy decisions have a greater impact than the specifics of
PD modelling alone.

Reinforcement learning (RL) proves to be competitive within practical bounds. Without relying on any hard-
coded strategy, the best RL agent now achieves earnings of over €380,000 in the same scenario, more than 85%
of the deterministic optimum. This performance is already within the typical margin-of-error ranges found in
PD calibration and cost-of-funds assumptions used in real-world practice.

Maintaining a governance-friendly architecture remains crucial. By keeping the survival-analysis PD model
outside the limit-setting engines, the framework adheres to model-risk governance standards. This allows the
risk team to independently validate the forward-looking hazard curves while the portfolio strategy retains
control over the decision logic. The modular design further enables replaying stress-scenario PDs or integrating
updated hazard models without retraining the agent, preserving regulatory transparency and supporting agile
experimentation with either deterministic (LP) or adaptive (DDQN/Actor-Critic) limit-setting policies.

7.2 Suggestions for further improvement
1. Reward-shaping with risk-adjusted profit.

Penalising volatility directly should close the residual gap between AC and LP while keeping write-offs low.

2. Constraint-aware or safe RL.
Incorporating soft budget, capital or fairness constraints via Lagrangian methods avoids the trial-and-error
phase that still costs AC ~€20 k in year 1.

3. Model-based or offline RL.
Learning from historical sequences or a calibrated simulator would slash training time and make hyper-
parameter sweeps less compute-intensive.

4. Hierarchical action spaces.
Replacing the fixed 10-point grid with an actor that outputs a continuous limit proposal, then snaps it to
regulatory break-points, can eliminate the residual 5 % limit gap.

5. Robustness tests on alternative PD dynamics.
Stressing the agent with macro-downturn scenarios will reveal whether the learned policy generalises or
needs re-training.

7.3 Towards an Adaptive Credit Strategy
Recent academic work echoes the empirical hierarchy we observe here. Bertsimas & Dunn et al. [17] and
Elmachtoub & Grigas et al. [18] show that deterministic mathematical-programming formulations still dominate
when the environment is stationary and perfectly observable, which is exactly what our Pyomo LP embodies.

Conversely, the stream of deep RL in operational studies for vehicle-routing [19], for inventory control [20] and
for dynamic pricing [21], consistently finds that value-based methods such as DDQN converge quickly but leave
20–30 % of the optimal profit on the table, while policy-gradient, actor-critic based schemes catch up given enough
exploration, matching the 68 – 76 % vs. the LP pattern we document.

Together these references reinforce the key message of our study, LP remains the efficiency frontier, DDQN is a
fast but myopic learner, and Actor-Critic closes most of the residual gap when longer-run adaptation matters.

In summary, traditional nonlinear programming remains the “standard” when the environment is static and
well-understood. Yet credit-card portfolios live in a world of shifting PD curves, promotional spend shocks and
sudden policy changes. In that setting a carefully tuned RL agent can recover most of the deterministic optimum
while adding the priceless ability to adapt fast. Managerially the choice is not binary, so we could run the LP
overnight to benchmark, and then let the RL agent steer day-to-day adjustments bounded by risk constraints
learned from the LP frontier. The result is a principled, data-driven limit-management framework that marries
economic optimality with operational resilience.
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