

€  
α

## AI Powered Credit Limit Decisions

**LUXEMBOURG 7 AUGUST 2025**

Konstantinos Bousoulas

Luca Grassitelli



# TABLE OF CONTENTS

---

Introduction to Advanzia Bank

Motivation

Experimental Design

Governing Equations: DDQN & AC Agents

DDQN Training Performance

AC Training Performance

Profit Based Comparison

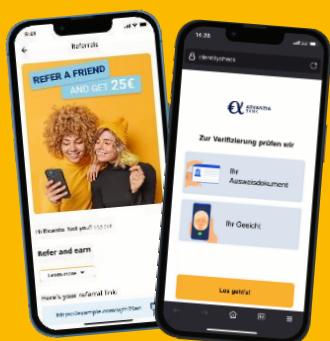
Summary & Recommendations

# ADVANZIA, A LEADING EUROPEAN DIGITAL BANK



**European go-to bank for  
Cards-as-a-Service solutions**

Partnerships with companies, associations and financial institutions to enhance brand loyalty



## Digital transformation

Fully digital onboarding  
Omni-channel UX  
Mobile services  
Digital banking platform  
Data connectivity



**2.8 million**  
credit card customers

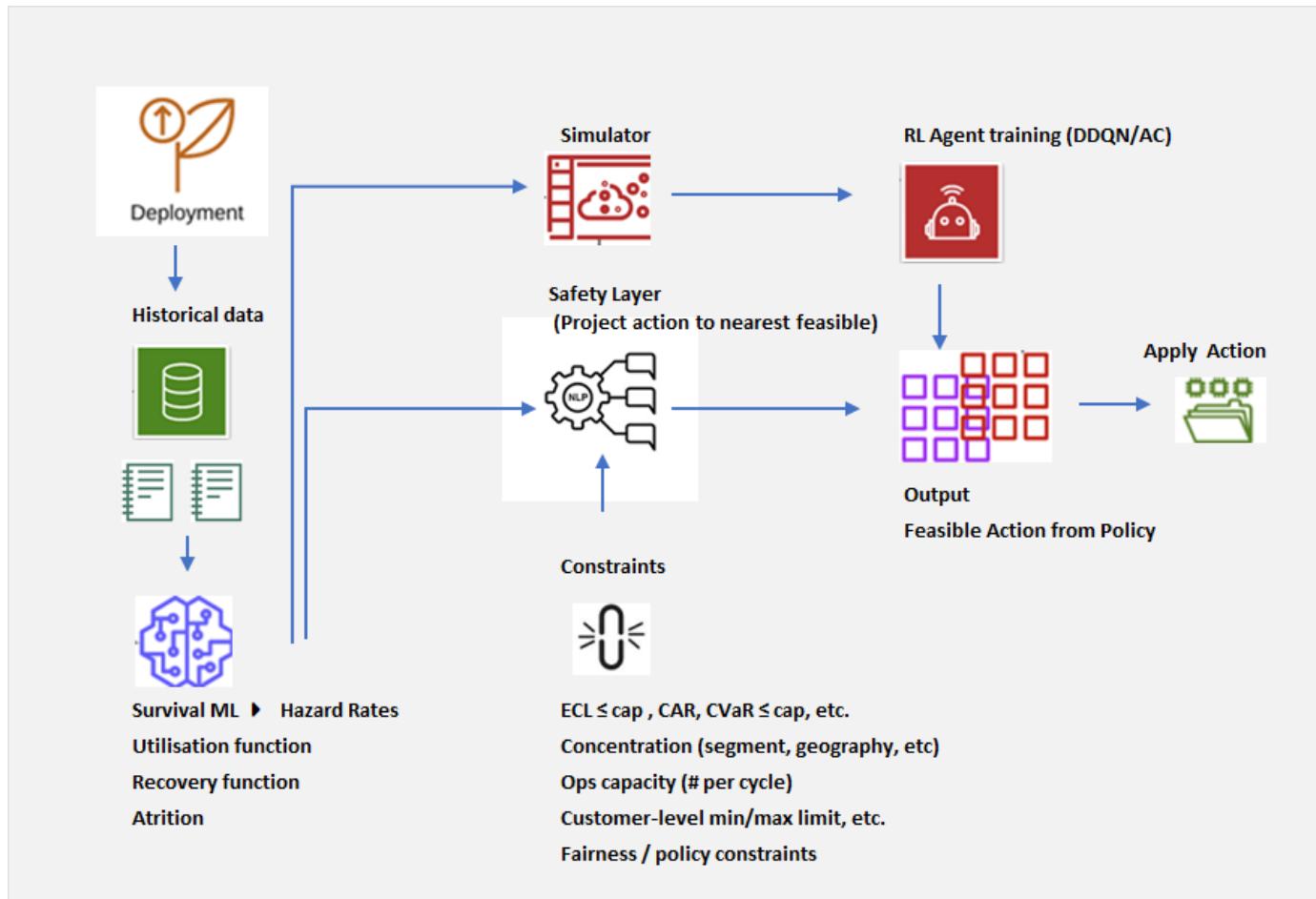
**>230** employees  
**29** nationalities



**9.9%**  
annual growth rate<sup>1</sup>

<sup>1</sup> Based on customer growth

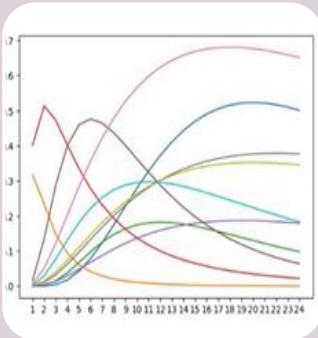
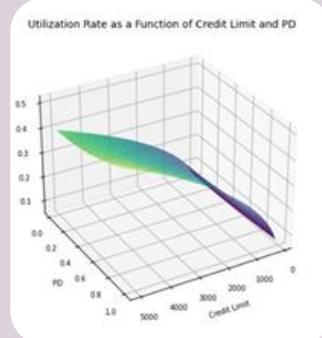
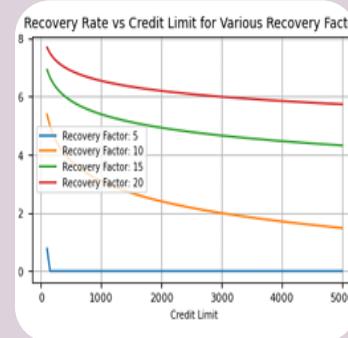
# MOTIVATION



- **A data-driven limit-management framework** that combines economic optimality with operational resilience.
- **RL agent (DDQN or Actor-Critic)** learns the long-term value of limit moves under uncertainty (utilization, attrition, losses, macro shocks).
- **Deterministic NLP solver** guarantees hard constraints (capital, loss limits, concentration, fairness, ops capacity) and converts the agent's "intent" into a feasible portfolio action.

# EXPERIMENTAL DESIGN - DDQN & AC AGENTS

## State Input Vector



**PD**  
Current &  
Long-term view  
*(12-month cum-PD  
est. on Hazard Rates)*

**UR**  
Current &  
Last 3M trend  
*(when UR increases  
Trend3M>0,  
indicating worsening  
credit risk)*

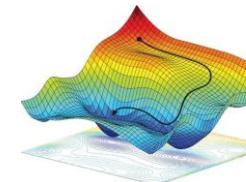
**Limit**  
Current &  
Maximum allowed



Both Agents deploy two neural nets,

**DDQN**: Both networks have the same architecture. One is the **online network** that learns every step; the other is a **target network** whose weights are copied from the online net only every N steps. Using the target net to compute the bootstrap term prevents the online net from chasing its own moving estimates and curbs Q over-estimation

**Actor Critic**: To separate policy and value roles, one network (**the actor**) outputs the policy  $\pi(a|s)$  the other (**the critic**) outputs a state-value  $V(s)$  or an advantage estimate. The critic's evaluation supplies the gradient signal that updates the actor toward better actions.



**MILP Benchmark**: a piecewise-linear mixed-integer linear programming model that optimally allocates credit limits under identical portfolio conditions, including initial limits.

## Action Output Space

There are 10 possible actions per customer  
defining an action ladder from  
no change (1.00x) to 40% increase (1.40x) in limit

**[1.00, 1.04, 1.09, 1.13, 1.17, 1.22, 1.26, 1.30, 1.35, 1.40]**

# GOVERNING EQUATIONS – DDQN & AC AGENTS

| Feature        | DDQN                                                                  | Actor-Critic                                                                  |
|----------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Core Approach  | Value-based (Q-learning)                                              | Combined Policy and Value-based                                               |
| Action Space   | Primarily discrete                                                    | Can handle continuous and discrete                                            |
| Policy         | Not explicitly learned                                                | Actor learns a policy (stochastic or deterministic)                           |
| Value Function | Learned Q-values (action-value function)                              | Critic learns a value function (state-value or action-value)                  |
| Bias           | Overestimation in DQN, mitigated by DDQN                              | Can be less prone to overestimation depending on implementation               |
| Complexity     | Relatively simple                                                     | Can be more complex, especially with off-policy methods like SAC (Soft AC)    |
| Exploration    | Relies on exploration strategies like epsilon-greedy                  | Exploration can be managed by the actor (e.g., entropy regularization in SAC) |
| Learning       | Primarily on-policy or off-policy depending on the specific algorithm | —                                                                             |

## DDQN

$$L_{DDQN}(\theta) = E_{(s,a,r,s')} [(r + \gamma(1-d)Q_{\bar{\theta}}(s', \arg\max_{a'} Q_{\theta}(a', s')) - Q_{\theta}(s, a))^2]$$

Minimize this loss w.r.t. the online network  $\theta$  (the target  $\bar{\theta}$  is held fixed and updated periodically).

## Actor-Critic

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a|s) [r + \gamma(1-d) V_W(s') - V_W(s)]$$

This is the actor update using the TD-error as the advantage; the critic parameters  $w$  are trained to fit  $V_W$  (usually by minimizing the squared TD-error).

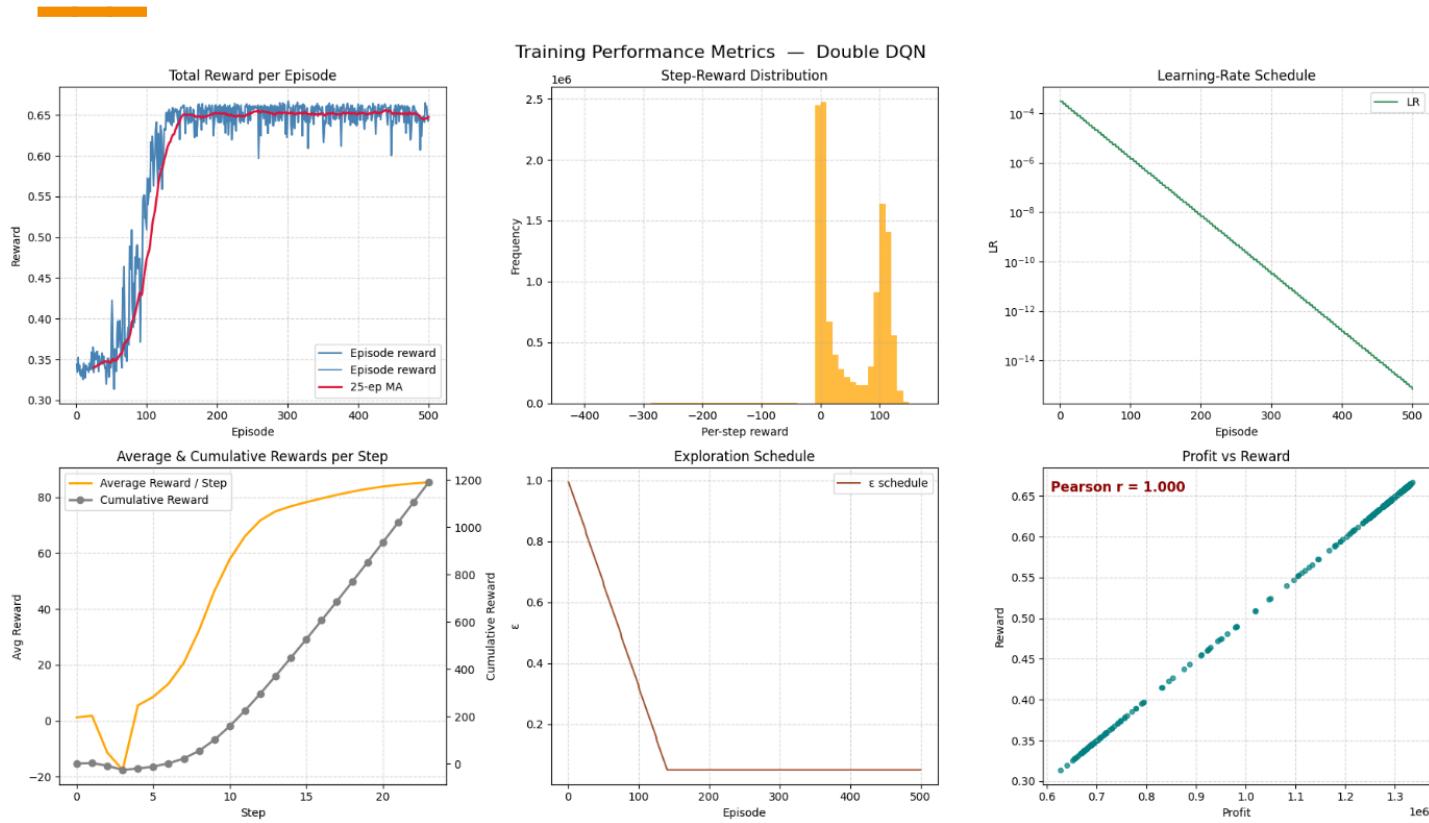
## Reward function

$$r_n = E(profit_n | a_n) = \sum_{i=1}^m \sum_{j=1}^n (Rev_{ij}(\cdot) - Loss_{ij}(\cdot))$$

$$\text{with } Rev_{in} = \sum_j^n (CL_{ij} * UR_{ij} * (1 - PD_{ij}) * APR_{ij}) \text{ and } Loss_{in} = \sum_j^n (CL_{ij} * UR_{ij} * PD_{ij} * (1 - RR_{ij}))$$

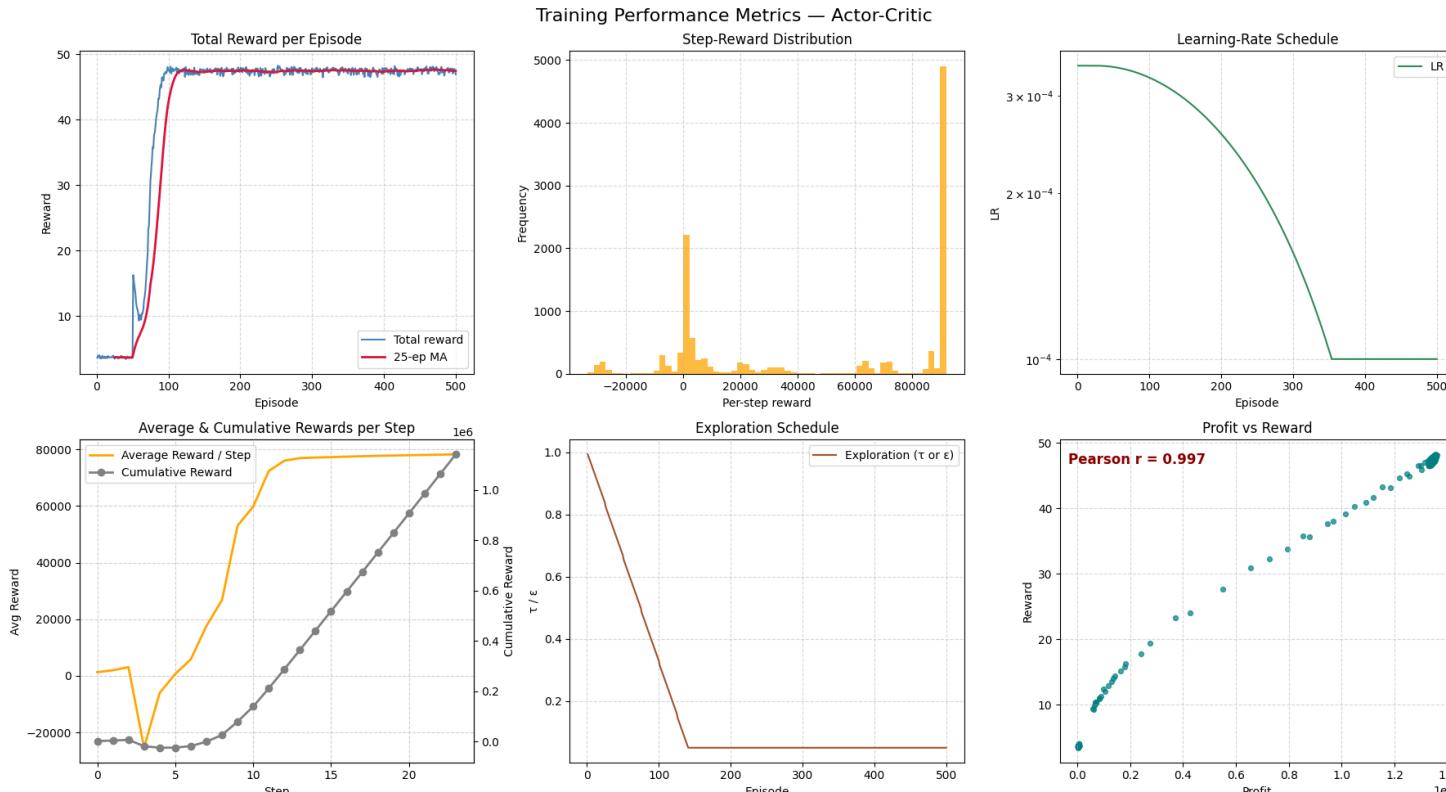
for the  $i$ -customer at time step  $n$  after performing the actions  $a_1$  to  $a_n$  up to that point.

# DOUBLE DQN AGENT – TRAINING PERFORMANCE



- **Rapid lift & settle:** Rewards climb from  $\approx 0.3 \rightarrow 0.65$  within  $\sim 100$  episodes and stay there. Early plateau shows strong sample efficiency.
- **Positively skewed rewards:** Step-reward histogram peaks at 50-100 with a thin negative tail. Profitable actions dominate while riskier moves keep exploration alive.
- **Exponential LR taper:** Learning rate drops smoothly by  $\sim 10^5 \times$  across training. Big early updates accelerate learning, tiny later steps lock gains.
- **Step-level turnaround:** Avg-reward flips from negative to solidly positive by step 10-15; cumulative curve rises steadily. Agent quickly pinpoints profitable credit limits and sustains them.
- **Linear  $\epsilon$ -decay:** Exploration rate slides  $1.0 \rightarrow 0.05$  over 350 episodes. Ample early probing followed by confident exploitation yields stable policy.
- **Profit aligned:** Pearson  $r = 1.000$  between reward and  $\epsilon$ -profit. Signal maps exactly to real financial gain.

# ACTOR CRITIC AGENT – TRAINING PERFORMANCE



- **AC surge:** Rewards leap  $\sim 0 \rightarrow 48$  by  $\approx 120$  episodes and stick there. Solid, high plateau shows reliable convergence.
- **Lively exploration:** Skewed step-reward histogram signals big early variance, however, with strong gradients without premature collapse.
- **Agile learning rate:** Cosine decay ( $3e-4 \rightarrow 1e-4$ ) keeps adaptability. Avoids stagnation after the big jump.
- **Hockey-stick gains:** Per-step rewards spike at steps 6-10, then level; cumulative line steady. Stable marginal returns once policy locks in.
- **Smooth  $\tau$  anneal:** Linear  $1 \rightarrow 0.05$  cooling maintains graded randomness and prevents early over-commitment versus  $\epsilon$ -greedy.
- **Profit aligned:** Reward vs. profit  $r = 0.997$ . Training signal perfectly tracks real money.

# PROFIT BASED COMPARISON

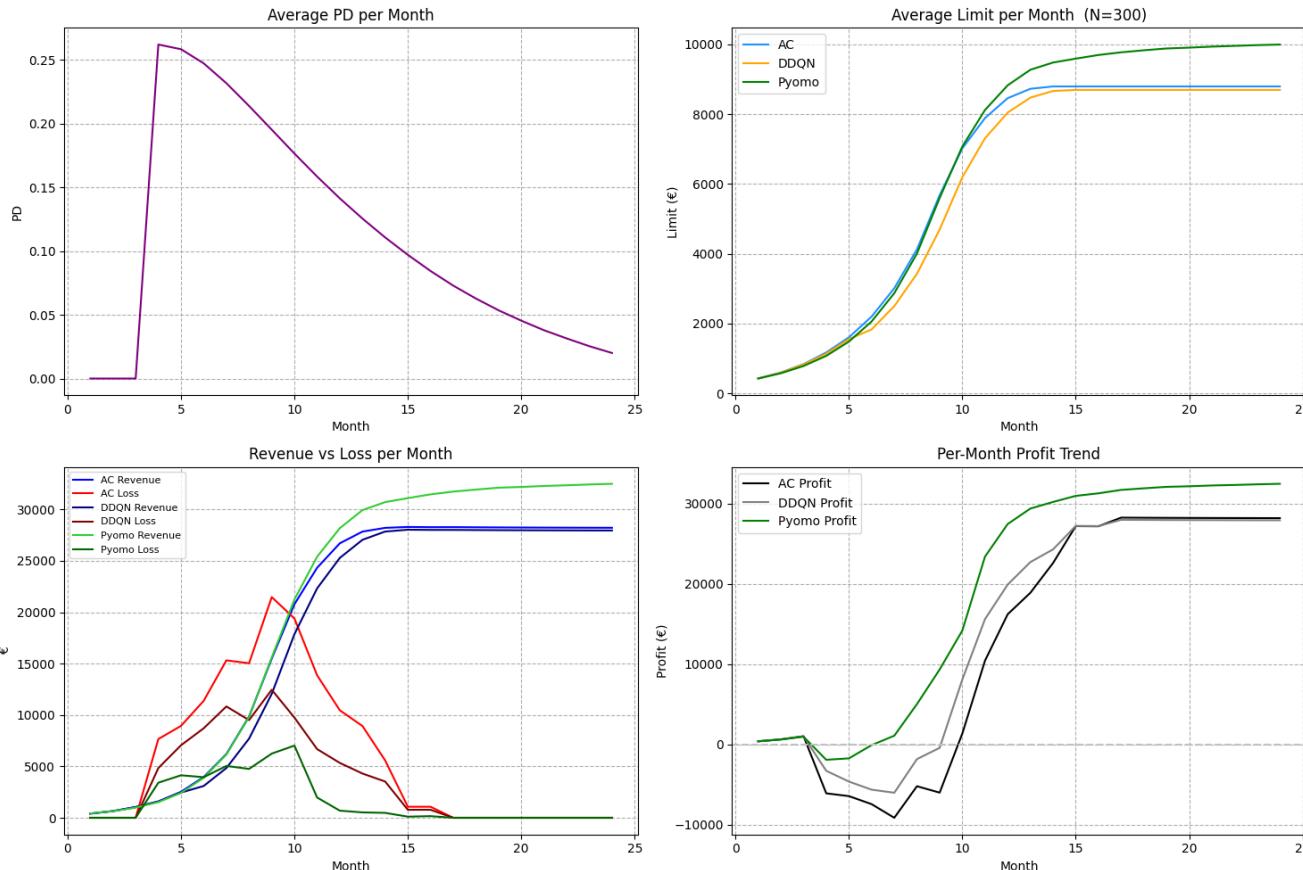


Table 1: Profit-based comparison, DDQN and Actor–Critic agents

|                                    | Pyomo (benchmark) | Actor–Critic | Double DQN |
|------------------------------------|-------------------|--------------|------------|
| <i>Profit at steady state</i>      |                   |              |            |
| Monthly profit                     | ≈€31 k            | ≈€27 k       | ≈€24 k     |
| Gap closed                         | 100 %             | 85–88 %      | 75–78 %    |
| <i>Profit over 24-month window</i> |                   |              |            |
| Cumulative profit                  | €458 k            | €312 k*      | €349 k     |

- **Traditional nonlinear programming remains the “standard”** when the environment is static and well-understood.
- **Learning cost versus long-run gain.** DDQN converges within ~100 episodes, incurs the smallest write-off spike, and is cash-positive from month 8. Actor-Critic needs an extra quarter of exploration and ~€25 k of additional early losses, yet by month 15 it overtakes DDQN’s monthly profit and keeps closing the gap to the LP frontier
- **Limit policy matters more than PD modelling.** All three approaches face the same PD “hump” (25 % at month 4). The difference is how far they dare to lift limits through it. A 5 % gap in the final average limit makes a 10 – 12 % difference in monthly profit. Small policy tweaks compound quickly.
- **RL is competitive within bounds.** Without any hard-coded strategy the best RL agent now earns > €380 k in the same scenario (> 85 % of the deterministic optimum).

# SUMMARY & RECOMMENDATIONS

---

DDQN learns fastest ( $\approx 100$  episodes), is cash-positive by month 8, and has the smallest early write-off spike. Actor-Critic needs an extra quarter and  $\approx 25k$  more early losses, but by month 15 it overtakes DDQN's monthly profit. The deterministic LP remains the frontier. The best RL agent still earns  $>380k$  ( $\approx 85\%$  of LP). We keep the survival-model PD/hazard outside the limit engine for governance and enforce risk, capital or ops limits via the NLP safety layer.

- **Policy choices > small model tweaks:** A 5% higher *average limit* yields 10–12% more monthly profit. All methods face the same 25% PD spike at month 4, however the gap comes from how boldly limits are raised through that spike, not from tiny PD-model refinements.
- **Implementation:** Use LP periodically to set the benchmark and let RL steer day-to-day adjustments through the NLP projector. Keep the hazard model separate so Risk can validate and Stress can replay scenarios without retraining.
- **Risk-adjusted rewards:** Train with  $Reward = Profit - \lambda \cdot Risk$  (e.g., Profit –  $\lambda \cdot$ Volatility or Profit –  $\lambda \cdot$ VaR<sub>95</sub>). Choose  $\lambda$  so the trained policy meets your target loss volatility or VaR limit.
- **Lagrangian constraints** (soft budgets): Add penalties  $\lambda_c \cdot (\text{usage} - \text{cap})^+$  for capital or ops constraints. Increase  $\lambda_c$  when a cap is breached, decrease when safe. This guides Actor-Critic away from costly trial-and-error in first year.
- **Speed & robustness:** offline model-based RL, hierarchical continuous actions (then snap to regulatory break-points), and macro stress tests to verify generalization.

---

Thank you for your attention!