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Abstract

Machine learning (ML) models for bespoke credit risk analytics is well trod-
den ground. Both FinTech’s and larger financial institutions use ML meth-
ods for in-house credit risk models. Model development initiatives vary by
institution. Smaller teams typically adopt open-source software. Whereas
larger institutions often leverage licensed software that can be more “point
and click”. However, most ML binary classification algorithms provide a
score value from zero to one with high decimal precision. Scaling of this raw
score to match the score range and odds of an existing score, or a bureau
score, is usually a business requirement. Oftentimes, this scaling process en-
tails rounding to the nearest integer value to generate a user-friendly score.
Whether writing custom code to scale or a licensed solution, one common
way is a two-step linear transformation from unscaled scores, first to implied
log odds, then finally to scaled values. However, the literature on scaling of
credit scores is rather sparse, especially for high decimal precision ML ana-
lytics. To that end, the authors outline a novel approach to better scale a
bespoke score to match the range and odds of an existing score. This involves
leveraging a third order polynomial Ridge regression. We combine this tech-
nique with a known, albeit less documented, approach to match both the
odds at a base score value and the Points to Double the Odds (PDO). On an
empirical data set the authors observe at least four main benefits to this novel
scaling framework. First, we can achieve greater risk differentiation in terms
of unique score values, even after rounding the scaled score to the nearest in-
teger. On our data set our cubic fit garners a roughly 53% increase in unique
score values over the traditional linear method. This is an obvious benefit to
business end users for setting credit strategies and policies given the increase
in fidelity in risk rank ordering and risk differentiation. Second, the scaled
score is linear in the log odds space, whereas the linear transformed scaled
score demonstrates non-linearity in the log odds space. Third, the odds at a
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base score value are better matched. Fourth, the points to double the odds
are preserved better under the third order polynomial transformation. We
will outline in detail our novel approach and share empirical results on a
proprietary data set.
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1. Introduction

Machine learning (ML) techniques for binary classification have been
widely used in the consumer lending space to develop bespoke advanced pre-
dictive analytics to assess the credit worthiness of a consumer when applying
for various different credit products for many years now. Typical binary tar-
get variables include first payment default, ever charged off, ever 60+ days
past due over the first “n” months on book, to name just a few. Smaller teams
typically leverage open source software, such as Python and all the various
libraries for data science. This comes at the benefit of almost complete flex-
ibility on choices of feature engineering, model techniques, hyper-parameter
tuning, etc.... Larger institutions often use more “point and click” software
to develop credit scorecards, that are sometimes informed by ML techniques
for feature selection and discretization of continuous variables.

One typical aspect of such model development projects is the scaling of
a “raw” score value to a more traditional credit score range. Furthermore, it
is oftentimes the case that business end users, such as credit strategy teams,
require that the new scaled score roughly match the odds of either an existing
in-house score or the odds of bureau score, at least over some relevant range
of score values. This requires model development teams to use an appropriate
transformation from the raw score range to the desired scaled score range,
while preserving rank order of course, and matching the odds.

Various different approaches have been adopted for scaling raw score val-
ues to a preexisting score range, while attempting to match the good to bad
odds over at least some relevant range of score values. However, one poten-
tial shortcoming of such score scaling processes is range compression. This
is when the underlying original raw score value has greater granularity, and
thus greater risk differentiation power, than the resulting scaled score. Ad-
ditionally, matching the odds of an existing score can sometimes prove to be



challenging.

We will demonstrate through use of a cubic transformation that we can
alleviate the range compression and better match the odds of an existing
credit bureau score relative to the commonly adopted linear transformation
approach that is often used. In this way, this work is novel and practitioners
may want to explore the cubic transformation as an option when conducting
their score scaling process.

2. Description of the Data

The data used here is a proprietary data asset based on 136,683 total
number of loans. Within this 117,022 records were used to train a bespoke
machine learning (ML) binary classification predictive model. Additionally,
19,895 records were not utilized for model training and will be used in the
score scaling process.

The definition of the target variable used was the following.

e Positive Class: At the time of model development, all positive la-
beled loans must have had 184+ months from loan origination, i.e. 184
months on book (MOB), and never went more that 30 days past due
(DPD) at any point over the life of the loan.

e Negative Class: Negative labeled loans either went 60+ days past
due over the first 18 months on book OR were charged off at any point
over the life of the loan.

The features used for model development were a wide set of credit attributes
from the credit bureau. Given this high level description of the data set we
move our attention to some summary of analysis of two credit bureau scores
that were included on the data set.

3. Industry Standard Credit Bureau Scores

Included in the data set were two industry standard credit bureau scores.
We will refer to these credit bureau scores as Credit Bureau Score 1 and
Credit Bureau Score 2. In Figures 1 and 2 below we present histograms
of the two credit bureau scores, bifurcated by good and bad labeled loans.
By viewing the data in this way we can get a sense of how well the credit
bureau scores separate good from bad loans. By no means is the only way



to understand the risk differentiation power of these two bureau scores, but
it is one reasonable way to get a visual sense for the two scores’ separation
power.
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Figure 1: Bifurcated histogram for credit bureau score 1.

As mentioned above it is very often the case that business end users
will require a bespoke scorecard or bespoke ML model score be scaled to
match some existing score that is already in use. Additionally, it is common
that business end users will also want a new score to match the odds of an
existing score, as best as possible. By matching the odds we can minimize the
business disruption and strategy impacts from a new score being introduced.
This also tends to help with interpretation and strategy setting. In the next
section we will turn attention to the bespoke ML score that was developed
from this data set.
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Figure 2: Bifurcated histogram for credit bureau score 2.

4. Unscaled Machine Learning Score

We trained a machine learning (ML) binary classification model on the
target variable defined above. In this particular case, we used XGBoost,
which is a very popular ML technique that is widely used. The raw unscaled
output from the ML model, i.e. the fitted values, are on the interval from
zero to one. Because we defined our good loan outcome to correspond to a
value of 1 in our training data set, and a bad loan outcome to correspond to
a value of 0, fitted values from the ML model closer to zero are indicative of
higher risk. Conversely, records with score values closer to 1 are lower risk.

In Figure 3 we present the bifurcated histogram for the raw score on
the test data set. We see a significant separation and this will ultimately
motivate the cubic transformation we detail below.

Having provided some data visualization of the credit bureau scores and
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Figure 3: Bifurcated histogram for unscaled machine learning score.

the underlying raw unscaled ML fitted values, we turn now to the scaling
process itself.

5. Scaling Process

In this section will outline the following key steps for the scaling process
and then demonstrate how it is applied to our specific ML score and data
set. At a high level, the scaling process begins with calculating intervals on
the unscaled score range. From these intervals we can then calculate the
observed log odds rate within each score interval as well as the mean score
value within the interval. From these 2 vectors of data we can then fit various
different functional relationships between the mean values and the observed
log odds. In particular, we will explore a linear and cubic functional form.



From either the linear or cubic fit we can estimate the statistical relationship,
a mapping if you will, between the unscaled scores and the fitted log odds.
The classic choice for this functional relationship is linear, however, we will
demonstrate that a cubic relationship performs better in many respects. The
precise details of the scaling steps are outlined directly below.

1.

Starting from the roughly 20k test set records, we calculate 20 score

intervals, or bins, based on the percentiles of the unscaled ML score.

Test records are used here to avoid any potential skewness or bias in

using fitted score values from records used in model training. In our

case, this results in roughly 1000 records in each of the 20 bins. In

practice, each practitioner should decide on an appropriate number of

bins in order to have enough sample size in each bin to reliable estimate

the good to bad rate in each bin. Five, ten, twenty or twenty five are

common choices for the number of bins. In practice, if the data supports

more bins, this tends to be better. These score bins will as serve the

backbone of the remaining steps of the scaling process.

Step 2 is to calculate the good to bad log odds within each of the 20

bins. This will serve as the target variable in Step 4 below.

Step 3 is to calculate the mean score value within each of the 20 bins.

This will serve as the predictor variable in Step 4 below.

Step 4 has 2 variants, which we will elaborate upon.

(a) The traditional approach is to fit a linear ordinary least square

(OLS) model using the mean score value as the predictor and
the log odds as the response variable. In our case we have 20
observations from which to fit this OLS, and we will denote the
resulting fitted OLS model as follows:

i (x) = fo+ Pz Yz el0,1]

(b) We will show that for ML models, it may very well be the case
that a cubic transformation from unscaled scores to the log odds
space, more accurately fits the data and provides optimal scaling
properties to be detailed below.

~

G2 (¥) = Go + @1 + Goa® + Gz V2 €[0,1]

5. Step 5 is to then use the fitted transformation, from 4.a and 4.b, to

map raw unscaled ML score values to the fitted log odds space.
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6.

Finally, Step 6 is to use the Fundamental Scaling Equation to map
fitted log odds values to the scaled score space.

PDO

S/(.I):Sb—Fm

[: () —log (0y)] Yz e[0,1] andi=1,2 (1)

In Equation 1 we define the following terms.

S’ (z) is the final scaled score value, written as a function of the unscaled
score value.

x is the raw unscaled score value from the ML model output.

S, denotes a base score value, which is entirely chosen by the practi-
tioner. We will provide more details on this below.

PDO denotes the Points to Double the Odds, which is also chosen by
the practitioner, but is usually informed based on the observed data
available. We will provide more details on this below.

U; (z) is the fitted log odds value from Step 4 above. Because we are
comparing two different models in steps 4.a and 4.b, we will make it
clear which one we are using where. More details to follow on this
below.

Oy is the good to bad odds ratio in a relatively small interval around
the base score Sj,.

In Table 1 we highlight the key relationships that are imposed on the
resulting scaled score, which are by design and a result of utilizing the Fun-
damental Scaling Equation.

Table 1: Implied odds of the fundamental scaling equation.
Unscaled Score: | Fitted Log Odds: y; (x) | Scaled Score: S’ (x)
Zg log (%) = log (O;) — log (2) Sy — PDO
T log (Oy) S
To log (20y) = log (Oy) + log (2) Sy + PDO

For any continuous real valued selection for ¢ (z) and reasonable choices
of Sy, O, and PDQO, there exists values zy, 1 and x5 on the unscaled score
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range such that the fitted odds will be equal to the corresponding values in
Table 1. For example, there exists an unscaled score value of x; such that the
fitted log odds are ¢ (z1) = log (Oy), which means the associated fitted odds
are in fact O, and the scaled score value will be in fact Sy, which is exactly
what is desired. Similarly, there exists an unscaled score value of x5 such
that the fitted log odds are ¢ (xz2) = log (20;), which means the associated
fitted odds are 20, and the the scaled score is S, + PDO, which again is
exactly what is desired, meaning that at a score value of S, + PDO the fitted
odds are double the odds at Sy.. Analogous comments can be made regarding
Zo. In this way, the Fundamental Scaling Equation necessarily imposes the
desired odds matching by design.

Note that throughout it should be understood that we are using the natu-
ral logarithm with base e. Furthermore, note that Equation 1 above imposes
a linear relationship between scaled score values and fitted log odd values,
but not necessarily a linear relationship between scaled score values and raw
unscaled score values, which involves the functional form of g; (). Obvi-
ously, depending on the functional form of g; (z), the relationship between
unscaled fitted values from the ML model to the scaled score values, may or
may not be linear. It is important however, the estimated function g; (z) be
a real valued continuous strictly monotonically increasing function in order
to preserve the risk rank order of the original unscaled ML fitted values.

Typically, scaled score values are rounded to the nearest integer in order to
match the traditional score values of standard credit bureau scores. This also
has an impact on the risk differentiation power of a high decimal precision
unscaled score. The cubic fit can help to alleviate this by yielding more
unique integer value risk scores. We will highlight this fact in the next
section below.

5.1. Linear and Cubic Fitted Models

In Tables 2 and 3 we present the estimated regression coefficients, the
standard errors, the t values and the associated p values for the OLS and
cubic fitted models.

Table 2: OLS estimated model.
Estimate Std. Error t value Pr(>|t])

Bo -0.5481 0.2806 -1.95 0.0665
b1 5.3866 0.4393  12.26 0.0000




For the OLS model the estimated slope coefficient is statistically signifi-
cant at the 0.000 level of confidence.

Table 3: Cubic estimated model.
Estimate Std. Error t value Pr(>|t])

Q -2.2611 0.7224 -3.13 0.0065
ap 21.2892 4.7246 4.51 0.0004
g -37.8596 9.1962 -4.12 0.0008
g 25.2955 5.4497 4.64 0.0003

For the cubic fitted model all the estimated regression coefficients are
statistically significant at the 0.007 level or lower. In the next section we will
assess these relationships more.

5.2. Log Odds and ML Relationship

In Figure 4 we present the observed log odds and the mean unscaled score
scatter plot for the chosen 20 bins, along with the OLS best fit line and the
cubic fit. We can see that the cubic fit captures the relationship between the
log odds rate and the mean score values much better than the OLS fit. In
point of fact, the adjusted R squared value of the OLS fit is 88.72%, versus
96.09% for the cubic fit.

Furthermore, in terms of the fitted log odds space on the vertical axis,
the OLS line results in much more range compression, relative to the cubic
fit. The greater range in the cubic fit is not only more reflective of the true
underlying pattern in the data, but also the cubic fit will also result in greater
range in the final scaled score values. This is optimal for credit underwriting
decisions where greater risk differentiation is preferred.

In fact, for raw unscaled fitted values on the zero to one interval, we
can analytically calculate the possible minimum and maximum scaled score
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Figure 4: Log odds and machine learning score.

values. For the linear transformation we have the following.

S (0) = 8y + % 91 (0) — log (O)
— 5+ % [BO —log (ob)]
(1) = Si-+ s n (1)~ log (O]
=Sy + % [50 + B — log (Ob)}
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For the cubic transformation we have the following.

S (0) = Sy + % 32 (0) — log (Oy)]
PDO
= Sb + m [Oé() — lOg (Ob)]
S (1) = Sy + % 32 (1) — log (Oy)
PDO N . N
= Sb + lOg (2) [Oéo + a1 + Qo + g — 10g (Ob)]

This leads to the conditions that if BO > &g and @0 +Bl < Qo+a+ag+as,
then we are guaranteed less range compression from the cubic transformation
relative to the linear transformation. In looking back at Tables 2 and 3 we
can see that both of these conditions are satisfied.

Bo = —0.5481 > —2.2611 = dg
Bo + B1 = 4.8384 < 6.4639 = G + Ay + A + A

Therefore, we are guaranteed less range compression, and thus more unique
scaled score values, from the cubic transformation relative to the linear trans-
formation. We turn now to explore the relationship between the credit bureau
scores and the log odds.

5.8. Log Odds and Credit Bureau Score Relationships

For the purposes of comparison, let us examine the log odds to mean score
value for both of the credit bureau scores. Notice in Figures 5 and 6 that
the observed log odds to mean score value relationship is inherently much
more linear. In fact, the cubic fit which is included in the figures is nearly
linear over the relevant range of score values. This again illustrates how the
bespoke ML score can provide much greater risk differentiation.

5.4. Scaling Parameter Selections

For our case, we opted to use Credit Bureau Score 1 to select the three
scaling parameters.

1. We chose to center our base score value at S, ~ 650.
2. In the score interval (645,654], which is a close neighborhood of our
base score value, the observed good to bad odds are O, ~ 4.7.
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Credit Bureau Score 1 to Log Odds
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Figure 5: Log odds and Credit Bureau Score 1.

3. The selected PDO = 30.

Based on these selected values, in the next section we will provide a compar-
ison between the resulting OLS and cubic scaled scores.

5.5. Empirical Results Comparing OLS to Cubic Scaling

With these three scaling values selected, along with the fitted OLS and
fitted cubic function, we can now use Equation 1 to calculate two competing
scaled scores to compare and contrast how the scaling from the OLS versus
the fitted cubic function perform. In Table 4 we can observe the key summary
statistics for the two competing scaled scores.
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Credit Bureau Score 2
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Figure 6: Log odds and Credit Bureau Score 2.

Table 4: OLS and Cubic scaled score summary statistics.

Min | 1st Qrt | Median | Mean | 3rd Qrt | Max | # Unique

OLS | 564 618 666 671 723 790 227

Cubic | 503 630 669 669 704 850 347

The score range for the OLS transformation is from 564 to 790, with
a total of 227 unique values. Compare this with the cubic transformation
with a score rage from 503 to 850, for a total of 347 unique values. Thus
the cubic transformation results in roughly 53% more unique score values,
which results in greater risk differentiation. This has substantial positive
benefits for credit strategies to provide more granular threshold selection for
risk tiering, which can contribute to risk based pricing decisions.

In Figures 7 and 8 we present the histograms of the OLS and cubic
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transformation scaled scores. Note that while not exactly bell shaped, the
cubic transformation scaled score more closely resembles that of a Normal
bell shape distribution.

Linear Scaled Score
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Figure 7: Linear scaled score histogram.

As additional check, we can compare the desired good to bad odds and
the observed odds for the OLS and cubic transformation scaled scores in a
small interval around three specific score values. As we recall, at the base
score of S, ~= 650 we wanted achieve a good to bad odds ratio or roughly
Oy ~ 4.7 with Points to Double the Odds of roughly 30. In Table 5 we
present the observed odds in small intervals around 620, 650 and 680 for the
two competing scaled scores. We can clearly see that the cubic transformation
is able to better match the desired odds.
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Figure 8: Cubic scaled score histogram.
Table 5: OLS and Cubic scaled score comparison.
S,— PDO | S, | S, + PDO
Desired Odds 24 4.7 94
OLS Transformation Odds 3.2 6.6 9.1
Cubic Transformation Odds 2.3 4.3 9.9

As a final check, we can look at the plots of the observed odds rate to
versus the two scaled scores. Please refer to Figures 9 and 10. Notice that
even after the OLS transformation, the resulting scaled score still presents
a cubic relationship with the log odds. Compared with the cubic transfor-
mation scaled score, which now has a linear relationship with the log odds.
A linear relationship between the resulting scaled score and the log odds is
typically preferred by business end users.
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Figure 9: Log odds and OLS scaled scores.

6. Conclusion

We have provided a novel approach to accomplish scaling of a credit score.
The key difference in our approach is to utilize a cubic transformation when
mapping raw unscaled score values to the fitted log odds space, which is then
mapped to the scaled score space via the Fundamental Scaling Equation. The
key benefits of our approach are the following.

e Relative to the traditional linear transformation function, the cubic
transformation provides a wider range of values. This is important since
our intended application is risk differentiation. Range compression is
typically compounded by the business requirement to generate integer
valued credit risk scores.
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Mean Cubic Score Value to Log Odds
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Figure 10: Log odds and Cubic scaled scores.

e The cubic transformation is better able to match the desired good to
bad odds ratio at a selected base score value. In addition the Points to
Double the Odds (PDO) is also matched more accurately.

e The distribution of the cubic scaled score is more bell shaped, versus
the linear transformation.

e Lastly, the cubic scaled score is linear in the log odds space, whereas the
linear scaled score still exhibits a third order polynomial relationship
with log odds.

For all of the above reasons, practitioners who need to scale a bespoke

score, especially an ML score, to a known score range for an existing score,
and also match the odds and PDO, should consider exploring both the classic
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linear transformation as well as cubic transformation. Further research work
that is motivated may be to consider other more flexible transformations
such as the Box—Cox power transformation, smoothing splines, LOESS, to
name just a few.
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