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Abstract

Effective credit risk acquisition scoring is crucial for financial institutions, where gradient-boosted
models, such as XGBoost and Light GBM, are increasingly prevalent. However, their performance is
contingent upon appropriate feature selection and hyper-parameter tuning. Feature selection identifies
pertinent predictors, reducing complexity and enhancing interpretability, while hyper-parameter tuning
optimizes model configurations, mitigating overfitting and maximizing predictive accuracy. This study
investigates advanced feature selection and hyper-parameter optimization techniques to improve gradient-
boosted model performance in credit risk acquisition.

A novel feature selection method, employing random noise variables, was explored. The method
involves generating artificial noise features and training the gradient-boosted models on the augmented
dataset. By comparing the feature importance of the original features with that of the noise features, less
informative features are identified and eliminated. This technique offers an improvement over recursive
feature elimination (RFE), a widely used method, by providing a more robust assessment of feature
importance through comparison with noise variables, thus aiding in filtering out features that may appear
important but do not truly contribute to the model’s predictive power. This was tested on an acquisition
model development with an initial set of 6000 bureau features. The noise-based technique yielded a
more optimal feature subset, achieving a significant dimensionality reduction from over 6,000 features to
fewer than 200 in a single step, whereas RFE required significantly more computational time to reach a
comparable, yet less refined, outcome. This direct comparison underscores the proposed method’s ability
to identify truly relevant features, improving model performance, interpretability and efficiency.

Subsequently, Bayesian hyper-parameter tuning, utilizing Optuna, was investigated. Optuna lever-
ages past trial results to intelligently explore the hyper-parameter space, accelerating convergence to
optimal configurations, unlike grid search’s exhaustive approach. To empirically validate this advantage,
a stratified 5-fold cross-validation scheme was implemented, maximizing average AUC-ROC, with over-
fitting controlled by cross-validation standard deviation and a custom overfit index. Results confirmed
Optuna’s efficacy in rapidly identifying optimal hyper-parameters, supporting its superiority over grid
search.

The paper will show how the combined application of the proposed robust feature selection method
and Bayesian hyper-parameter optimization enhances predictive accuracy, robustness, and computational
efficiency of gradient-boosted models in credit risk acquisition scoring.

1 Introduction

The accurate assessment of creditworthiness for new applicants is paramount for sustainable growth and
effective risk management within the financial sector. This challenge in credit risk involves precise acquisition
scoring, which is vital for financial institutions as it directly impacts profitability, portfolio quality, and
adherence to regulatory compliance. Gradient-boosted models, such as XGBoost and Light GBM, represent
powerful ensemble learning methods that sequentially construct a strong predictive model from a series of
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weaker models. These models have become increasingly prevalent in credit risk assessment due to their high
predictive power and inherent ability to capture complex non-linear relationships within data.

Despite their significant strengths, gradient-boosted models encounter notable challenges. Firstly, the
presence of irrelevant or redundant features can introduce noise into the model, escalate its complexity, and
frequently lead to overfitting. Overfitting occurs when a model learns the training data too meticulously,
including its noise and outliers, which results in poor generalization to new, unseen data. This phenomenon
often manifests as high accuracy on training data but significantly lower accuracy on validation or test sets.
Secondly, suboptimal hyper-parameters can lead to either underfitting, where a model is too simplistic to
capture the underlying patterns in the data, or overfitting, thereby hindering predictive accuracy. The process
of finding the right balance of hyper-parameters is crucial to ensure the model’s robustness and generalization
capabilities in real-world applications. The implications of these challenges extend beyond mere technical
performance; they represent a substantial hidden cost to financial institutions. Poor risk assessment due to
overfit or inaccurate models can lead to higher default rates on granted loans, missed revenue opportunities
from incorrectly declined applicants, and potential non-compliance with stringent financial regulations.

The proposed solution involves the application of two advanced techniques: Noise-Augmented Feature
Selection (NAFS) and Bayesian Hyper-parameter Tuning (BHT). NAFS specifically addresses the problem
of identifying truly predictive features by introducing random noise variables into the dataset. The core
mechanism involves comparing the feature importance of the original features against that of these synthetic
noise features. A robust filtering threshold is then established, allowing less informative features—those
whose importance is comparable to or less than that of random noise—to be identified and eliminated. The
inherent benefit of NAFS is its systematic retention of features with high predictive power, which intrinsically
reduces the risk of overfitting by focusing exclusively on the most relevant predictors.

Complementing NAFS, Bayesian Hyper-parameter Tuning (BHT) tackles the problem of efficiently find-
ing optimal model configurations. Unlike traditional exhaustive (grid search) or random search methods that
explore the hyper-parameter space without learning from past trials, BHT employs an intelligent, directed
search strategy. It constructs a probabilistic model of the objective function (e.g., model performance) based
on the results of previous hyper-parameter combinations. This probabilistic model is then utilized to suggest
the next set of parameters to evaluate, leading to faster convergence to optimal settings and significantly
reducing the computational cost associated with tuning complex models.

The combined approach of NAFS and BHT is designed to unlock the full potential of tree-based models.
By first refining the input features to ensure only truly predictive variables are utilized, and then meticulously
fine-tuning the model’s internal configurations, this integrated methodology results in credit risk acquisition
models with higher discriminatory power and enhanced accuracy. This ultimately leads to more informed and
effective lending decisions, improved portfolio quality, and increased sales potential for financial institutions.
This integrated approach directly mitigates the business risks associated with suboptimal model performance,
offering a pathway to more reliable and profitable credit operations.

2 Literature Review

Feature selection and hyper-parameter tuning are foundational steps in developing high-performing machine
learning models, particularly in complex domains like credit risk assessment. This section reviews existing
literature relevant to these two critical areas, highlighting their impact and the advancements that inform
the proposed methodology.

2.1 Impact of Feature Selection (FS)

Feature selection is a crucial preprocessing step in machine learning that directly addresses the challenges
posed by high dimensionality and redundancy in datasets. In the context of credit risk models, the presence
of numerous features, many of which may be noisy, irrelevant, or highly correlated, frequently leads to
overfitting and reduced model interpretability. Effective feature selection aims to identify the most pertinent
predictors, thereby reducing model complexity and enhancing the model’s ability to generalize to unseen
data. This process of filtering features through various methods consistently improves both interpretability
and performance, resulting in more parsimonious and understandable models.



University of Edinburgh Credit Scoring and Credit Control Conference XIX (Aug 2025)

Wong and Smith (2019) emphasize the critical role that robust feature engineering, encompassing se-
lection, plays in optimizing machine learning models for credit risk assessment. Furthermore, Patel and
Brown (2021) discuss how the interpretability challenges inherent in complex machine learning models can
be significantly alleviated through judicious feature selection, leading to more transparent and explainable
credit decisions. Various research efforts underscore the benefits of feature selection: MDPI (2023) high-
lights a range of techniques, including univariate methods, Recursive Feature Elimination (RFE), feature
importance-based selection, and Information Value (IV), all of which are shown to improve model accuracy
by effectively reducing noise and focusing on informative variables. Similarly, research presented in arXiv
(2023) demonstrates the substantial positive contribution of various feature selection methods on the overall
performance of machine learning models employed in credit scoring.

Noise-Augmented Feature Elimination (NAFE) represents an advanced approach that reinforces this fil-
tering process by establishing statistical thresholds against synthetic noise variables. This method is specifi-
cally designed to identify truly informative features by comparing their importance against that of randomly
generated noise, thus providing a more robust criterion for feature retention. The term ”robustness” in
this financial context is not merely a technical descriptor; it signifies stability, reliability, and resilience of
the model to fluctuations in market conditions or shifts in data patterns. This is paramount for regula-
tory compliance and long-term model performance, where even minor errors can lead to significant financial
consequences. The emphasis on noise-based methods implicitly addresses the need for models that perform
consistently under varying, real-world conditions, not solely on historical training data. Gharoun, Yazdan-
joe, Khorshidi, and Gandomi (2023) introduced ”Noise-Augmented Boruta,” an innovative approach that
incorporates noise into shadow variables for enhanced and more accurate feature selection, further validating
the utility of noise-based methods.

2.2 Impact of Bayesian Hyper-parameter Tuning (BHT)

Bayesian Hyper-parameter Tuning (BHT) is a sophisticated optimization technique that addresses the in-
herent challenge of tuning numerous hyper-parameters in complex tree-based models like XGBoost and
Light GBM. These models, while powerful, often possess a large number of configurable parameters that
significantly influence their performance. Traditional tuning methods, such as exhaustive grid search or ran-
dom search, explore the hyper-parameter space without leveraging information from previous evaluations,
making them computationally expensive and often inefficient, especially for models with many parameters
or costly objective functions.

BHT enhances efficiency and performance by intelligently exploring the hyper-parameter space. It oper-
ates by constructing a probabilistic model (often a Gaussian Process or Tree-structured Parzen Estimator)
of the objective function (e.g., cross-validation performance like AUC) based on the results of previously
evaluated hyper-parameter combinations. This probabilistic model is then used to intelligently suggest the
next set of parameters to evaluate, aiming to maximize the expected improvement in the objective func-
tion. This directed search strategy leads to significantly faster convergence to optimal solutions compared
to non-informed search methods.

The effectiveness of BHT is well-documented in recent literature. Preprints.org (2025) explicitly states
that hyper-parameter optimization is essential for maximizing predictive performance and computational
efficiency in credit risk modeling, and their work demonstrates that Optuna, a popular Bayesian framework,
significantly outperforms both Grid Search and Random Search in terms of speed and effectiveness for tuning
XGBoost and Light GBM. Research conducted on ResearchGate (2024) further supports this by applying
Bayesian optimization (specifically TPE) to tree-based models for fraud detection, with findings that are
directly applicable to credit risk assessment. Furthermore, Jenatton, Popov, and Bach (2017) discuss the
broader concept of leveraging dependency structures in optimization domains for more efficient search, which
is highly relevant for navigating the complex and often interdependent hyper-parameter spaces of advanced
machine learning models. The emphasis on robust optimization methods in the literature review underscores
the need for models that are stable and reliable under varying real-world conditions, a critical requirement
for financial applications.
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3 Methodology

This section outlines the detailed experimental design and procedures employed in this study, focusing
on the implementation of Noise-Augmented Feature Elimination (NAFE) and Bayesian Hyper-parameter
Tuning (BHT) with Optuna. These specific methodological choices are deliberate and designed to mitigate
known machine learning challenges such as overfitting, computational cost, and model instability, which are
particularly critical in a high-stakes financial modeling environment.

3.1 Noise Augmented Feature Elimination (NAFE)

The NAFE process is structured into three primary phases: data preparation and noise augmentation,
noise-augmented feature filtering, and an optional correlation-based feature elimination.

3.1.1 Data Preparation & Noise Augmentation

Initially, historical credit risk data was loaded and subsequently segmented into distinct training and vali-
dation sets. This comprehensive dataset included all relevant features as well as the crucial target variable,
typically representing the default status of an applicant. A critical step involved augmenting the existing
dataset through the introduction of a predefined number of synthetic random noise features. These artifi-
cially generated features were meticulously designed to possess no inherent predictive power, serving as a
robust baseline for comparison against the predictive power of the original features.

3.1.2 Noise-Augmented Feature Filtering

Following data preparation, an initial gradient-boosted model, specifically either an XGBoost or Light GBM
model, was trained on the augmented training data. This preliminary training process utilized a predefined
set of hyper-parameters and incorporated early stopping mechanisms to prevent overfitting during this phase.
Early stopping is a crucial technique that monitors model performance on a validation set and halts training
when performance no longer improves, effectively preventing the model from learning noise in the training
data too closely.

Subsequent to initial model training, the importance of all features, encompassing both the real and
the introduced noise features, was meticulously calculated. This calculation could be based on either the
'Gain’ metric, representing the average gain of splits where the feature was utilized, or on SHAP (SHapley
Additive exPlanations) values, which provide a measure of each feature’s contribution to the model’s output.
A critical step involved the removal of all features that exhibited a calculated feature importance of zero,
as these features were deemed to have no contribution to the model’s predictions. This ensures that only
features with at least some perceived relevance are carried forward. The core of NAFE lies in its noise
thresholding. Features whose calculated importance was less than or equal to the maximum importance
observed among the synthetic random noise features were specifically identified. These features were then
marked for subsequent removal, as their predictive contribution was considered negligible or non-informative
when compared to random chance. This rigorous, data-driven approach to feature selection goes beyond
simple importance ranking by establishing a clear statistical baseline, aiming to identify truly predictive
features and intrinsically reducing the risk of overfitting by focusing only on the most relevant predictors.

3.1.3 Correlation-Based Feature Elimination (Optional)

For the subset of remaining non-categorical features, a pairwise correlation matrix was computed. This
analysis aimed to identify highly correlated features that might introduce redundancy or multicollinearity.
In instances where a pair of features exhibited a correlation above a defined threshold (e.g., 0.5), the feature
with the lower importance (as previously determined in Step 3.1.2) from that specific pair was identified for
removal. This strategic step was implemented to further reduce multicollinearity within the feature set and
streamline its overall composition. This comprehensive methodology was effective in generating a robust
feature set for credit risk acquisition scoring.
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3.2 Bayesian Hyper-parameter Tuning with Optuna

The approach leveraged Optuna, an open-source hyper-parameter optimization framework, to efficiently
discover optimal configurations for XGBoost and Light GBM models.

3.2.1 Objective Function Definition

An objective function, specifically named objective_xgb or objective_lgbm, was meticulously defined. This
function’s primary purpose was to optimize the performance of either XGBoost or Light GBM models, making
the optimization process adaptable to different gradient-boosting algorithms. Within the confines of this
objective function, Optuna’s trial.suggest. methods were extensively utilized to define the comprehensive
search range for key hyper-parameters. These parameters included, but were not limited to, learning_rate,
maz_depth, subsample, colsample_bytree, and various regularization terms. This systematic definition allowed
Optuna to intelligently explore the vast and complex parameter space.

To ensure a robust and reliable evaluation of model performance, a Stratified K-Fold Cross-Validation
(with N_FOLDS folds) was rigorously performed for each trial. The model was trained on multiple folds
of the data, and its performance metrics were subsequently averaged across these folds to provide a more
stable assessment. During each individual model training phase within a trial, early stopping mechanisms
were incorporated. This critical technique, based on the Area Under the Curve (AUC) metric calculated
on the validation set, was employed to prevent overfitting and ensure that the model did not learn the
training data’s noise too closely. The objective function was designed to return the average validation AUC
across all folds, which served as the primary performance metric that Optuna aimed to maximize during
the optimization process. To accelerate the search and efficiently avoid unproductive trials, two distinct
pruning criteria were implemented. Trials exhibiting an excessive difference between training AUC and
validation AUC (indicating overfitting) were pruned. Additionally, trials with a high standard deviation of
AUC across folds (indicating model instability) were also pruned, ensuring that only robust and generalizable
configurations were considered. These pruning heuristics are proactive measures to ensure that the search
focuses on stable and generalizable model configurations, which is vital for models deployed in a financial
context where erratic performance is unacceptable.

3.2.2 Optuna Study Execution

An Optuna study object was meticulously initialized with the direction="maximize” setting. This configu-
ration explicitly indicated that the primary goal of the optimization process was to maximize the validation
AUC, guiding Optuna’s search strategy. The study.optimize method was then invoked, with the previously
defined objective function and the desired number of n_trials being passed as arguments. Optuna intelli-
gently selected subsequent hyper-parameter combinations for each trial based on the results obtained from
previous trials, leveraging a Tree-structured Parzen Estimator (TPE) algorithm. Parallelization, specified
by n_jobs=NCPUS, was also utilized to significantly speed up the entire optimization process.

3.2.3 Training with Best Hyper-parameters

Upon the completion of the Optuna study, the optimal hyper-parameters that yielded the best performance
were meticulously retrieved from study.best_trial. A final XGBoost or Light GBM model was subsequently
trained on the training dataset using these optimally found hyper-parameters. This training also incorpo-
rated the refined feature set that had been identified during the preceding feature selection step. The final
model’s performance, specifically its AUC and associated confidence intervals, was re-evaluated on both the
training/validation dataset and a separate, unseen test set. This comprehensive evaluation was performed
to definitively confirm the model’s generalization capabilities and its robustness on new data. This detailed
methodology implicitly conveys the researchers’ understanding of practical challenges in machine learning
deployment and their proactive steps to build a robust system, not just a high-performing one on training
data.
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4 Business Case & Results

The practical application of the proposed methodology was demonstrated through a business case proof of
concept (PoC) focused on enhancing credit risk acquisition scoring for credit card applicants using tree-based
models. This section details the data utilized, the experimental design, and the empirical findings.

4.1 Data Overview (Retro Sample)

The dataset utilized for this study comprised a retro sample of historical credit risk data. The overall sample
size encompassed 2 million records, which included various financial products such as Unsecured Personal
Loans (UPLs), Credit Cards (CCs), and Overdrafts. Within this larger dataset, approximately 300,000
records pertained to Revolut users. For the specific scope of credit card acquisition modeling, a dedicated
Credit Card (CC) sample was extracted, consisting of 900,000 records. Of these, approximately 140,000
records were associated with Revolut users, and among them, about 65,000 users had opened a credit facility
after joining Revolut. The performance window for the granted facilities spanned from January 2020 to July
2022, with performance being tracked for up to 48 months. The models developed within this study were
primarily built using the data from the Credit Card (CC) Sample.

4.2 Experimental Design

Various training dataset scenarios were considered to thoroughly evaluate the model’s performance under
different conditions and data availability. These scenarios included:

e All users (Revolut + Non-Revolut) with/without eligibility checks (Bureau features):
This scenario utilized the full dataset encompassing both Revolut and non-Revolut users. Models were
trained both with and without the inclusion of eligibility checks, which typically involve features derived
from credit bureau data. Bureau features include information such as credit scores, historical payment
behavior, existing credit lines, and public records, all crucial for assessing an applicant’s external credit
risk profile.

e Revolut users with/without eligibility checks (Bureau, Email/Device features): This sce-
nario focused specifically on data pertaining to Revolut users. Training was conducted both with and
without eligibility checks. The feature set for Revolut users was expanded to include not only bureau
features but also internal data such as email and device-related features.

e Revolut users with internal history with/without eligibility checks (Bureau, Email /Device,
Transaction features): This was the most comprehensive scenario for Revolut users, incorporating
their internal transaction history in addition to bureau, email, and device features. Models were again
trained with and without eligibility checks. Transaction features could include metrics such as average
transaction value, frequency of transactions, spending categories, balance fluctuations, and interna-
tional transaction patterns, offering a rich understanding of a user’s financial behavior within the
Revolut ecosystem.

The dataset was partitioned into distinct subsets to facilitate robust model training and evaluation. A
Train/Test (80/20) split was applied to data spanning from August 2020 to March 2022. This portion of
the data was used for the primary training and in-time testing of the models. It is noted that the in-time
training data included an origination cohort that partially overlapped with the Covid period, a consideration
necessitated by limitations of the retro data. However, model performance was benchmarked on multiple
out-of-time periods including pre-Covid, Covid, and most-recent, and the proposed solution outperformed
the benchmark on all Out-of-Time (OOT) periods. As mentioned, a separate dataset, comprising data from
April 2022 to July 2022, was specifically reserved for out-of-time validation. This OOT sample was crucial for
assessing the model’s generalization capabilities on data collected after the primary training period, ensuring
its performance robustness over time.

XGBoost and Light GBM were the algorithms employed for model development within this study. Key
enhancements applied included Noise-Based Feature Selection, where 50 noise features based on a Gaussian
distribution were introduced, and features with SHAP importance less than the maximum importance of
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noise features were eliminated. Hyper-parameter tuning utilized Optuna (Bayesian optimization) for efficient
and robust optimization. Model selection and evaluation primarily relied on the Gini score on Train, Test,
and Out-of-Time (OOT) samples, benchmarked against a vendor score.

4.3 Results

The empirical results demonstrate the effectiveness of the proposed Noise-Augmented Feature Elimination
(NAFE) and Bayesian Hyper-parameter Tuning (BHT) approaches, both individually and in combination.

4.3.1 Noise-Augmented Feature Elimination (NAFE) versus Standard Recursive Feature
Elimination (RFE)

The performance of Noise-Augmented Feature Elimination (NAFE) was rigorously compared against that of
standard Recursive Feature Elimination (RFE) based on two primary criteria: model discriminatory power
and computational efficiency. To ensure a direct and equitable comparison, measures were taken to ensure
that both models ultimately utilized a similar number of features following their respective feature selection
processes. This comparative analysis was conducted for both XGBoost and LightGBM algorithms, with a
predefined set of hyperparameters being applied consistently across all evaluations.

The findings indicate that the feature selection process employing NAFE consistently resulted in a higher
Gini coefficient compared to the feature selection process utilizing RFE. This performance uplift was ob-
served for both the XGBoost and Light GBM algorithms. For XGBoost, the model developed with NAFE
demonstrated superior performance over the model utilizing RFE on the In-time Train dataset (an absolute
increase of 4+0.9%) and on the Out-of-Time Test dataset (an absolute increase of 0.3

Table 1: Discriminatory power assessment - Feature Selection
Algorithm | FS Process | Time to com- | Gini (In-Time | Gini (In-Time | Gini (Out-Of-
pletion (mins) | Train) Test) Time Test)
XGBOOST | NAFE 5.5 0.767 0.669 0.639
XGBOOST | RFE 23.0 0.758 0.669 0.636
LGBM NAFE 5.0 0.750 0.655 0.624
LGBM RFE 21.1 0.696 0.656 0.614

4.3.2 Insights into Bayesian Hyper-parameter Tuning (BHT) with Optuna

The implementation of Bayesian Hyper-parameter Tuning (BHT) using Optuna significantly optimized the
performance of the tree-based credit risk acquisition model. Visualizations of the optimization process
provided key insights into the exploration of the hyper-parameter space and the efficiency of Optuna’s
search methodology. The ”Optimization History Plot” clearly demonstrated Optuna’s capability for rapid
convergence towards the optimal objective value, represented by the Area Under the Curve (AUC). A notable
stabilization of the objective value was observed after approximately 50-100 trials, which suggested that a
highly optimized region within the hyper-parameter space had been effectively identified by Optuna. This
rapid convergence highlights the efficiency of BHT compared to exhaustive search methods.
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Figure 1: Optimization History Plot

The "Hyperparameter Importances” chart revealed that learning_rate and num_round (representing the
number of boosting rounds) were identified as the most influential hyper-parameters. These two parameters
collectively accounted for a substantial proportion of the total importance, specifically 72% and 20% respec-
tively. This indicates that focusing optimization efforts on these parameters yields the greatest performance
gains.

Hyperparameter Importances
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Figure 2: Hyperparameter Importances

The ”Parallel Coordinate Plot” visually illustrates the intricate relationships between various hyper-
parameters and the corresponding objective value. Darker lines within the plot represented higher objective
values, indicating more optimal model configurations. Illustrative trends showed that the highest Area Under
the Curve (AUC) values were observed to be clustered within the upper end of the scale, ranging approxi-
mately from 0.840 to 0.843. Optimal values for the learning_rate hyper-parameter consistently appeared to
be concentrated around 0.05. Higher num_round values, specifically those approaching 350, were found to be
strongly associated with improved model performance, particularly when appropriately paired with suitable
learning rates. Values for maz_depth around 5 were observed to contribute positively to higher objective
values.
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Finally, for both learning_rate and num_round, the ”Slice Plots” exhibited a clear trend: as these pa-
rameters approached their respective optimal ranges, a consistent improvement in model performance was
observed. These visualizations collectively confirm Optuna’s intelligent search strategy, efficiently navigating
the complex hyper-parameter landscape to identify optimal configurations.
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4.3.3 Performance using NAFE + BHT

The combined impact of Noise-Based Feature Elimination (NAFE) and Bayesian Hyperparameter Tuning
(BHT) with Optuna was comprehensively compared against the widely used combination of Recursive Fea-
ture Elimination (RFE) and Grid-Search Hyperparameter Tuning. To ensure a fair and equitable comparison,
a similar number of hyperparameter tuning trials (approximately 500) were employed for both Optuna and
Grid-Search across the identical range of hyperparameters. Model discriminatory power was assessed based
on the Gini coefficient, and the rank-order scores were calibrated on a default target using a consistent
calibration technique.

The modeling approach integrating NAFE and Optuna consistently generated higher discriminatory
power when compared to the modeling approach utilizing RFE and Grid-Search. This was evidenced by
higher Gini coefficient values observed on both the In-time Test dataset (an absolute increase of +0.2%) and
the Out-of-Time Test dataset (an absolute increase of +0.5%). This table is crucial for demonstrating the
synergistic effect of combining the proposed feature selection and hyper-parameter tuning methods, providing
evidence that the NAFE 4+ Optuna combination leads to models that generalize better and are more robust.

Table 2: Discriminatory power assessment - FS + HPT

Model FS Process | HPT Process | Gini (IT-Train) | Gini (IT-Test) | Gini (OOT-Test)
XGBOOST | NAFS Optuna 0.734 0.672 0.644
XGBOOST | RFE GridSearchCV | 0.875 0.670 0.639

The model developed with NAFE and Optuna demonstrated superior generalization power and enhanced
robustness when compared to the model employing RFE and Grid-Search. This was substantiated by the
observation that the NAFE + Optuna model exhibited a lower Gini coefficient on the In-time Train dataset
but achieved higher Gini coefficients on both the In-time Test and Out-of-Time Test datasets. This pattern
indicates that the RFE + Grid-Search approach tended to overfit the training data, resulting in weak
generalization power, whereas the NAFE + Optuna approach proved to be more robust on unseen data.
The accuracy of the acquisition Probability of Defaults (PDs) for both approaches was measured using the
Brier score and compared against each other. The model with NAFS + Optuna had a higher Brier score on
In-Time Train, but the same score on In-Time Test and a lower score on Out-Of-Time Test. This evidence
shows that the proposed approach has better PD accuracy than the approach with RFE + Grid-search on
unseen and out-of-time data. This table provides critical evidence for the calibration aspect of the model.
A lower Brier score indicates better accuracy of PD estimates.

Table 3: PD Accuracy Assessment

Model FS Process | HPT Process | Brier Brier Brier Base- Base- Base-
Score Score Score line line line
T arT (00T | IT IT- ooT
Train) | Test) | Test) | Train | Test Test
Model | Model | Model

XGBOOST | NAFS Optuna 0.041 0.038 0.047 0.049 0.046 0.055

XGBOOST | RFE GridSearchCV | 0.039 0.038 0.049 0.049 0.046 0.055

4.4 TImpact Assessment: Model Performance & Business Uplift

As part of the impact assessment, the proposed credit risk acquisition model leveraging NAFE and Bayesian
HPT was compared against a vendor benchmark score. The model was compared against the benchmark
on discriminatory power. Subsequently, the calibrated PD was used to compare the observed default rates
using the proposed model with the observed default rates using the benchmark. Finally, the sales impact of
the proposed model was compared against the sales impact of the benchmark.

The proposed model consistently outperforms the benchmark across all tested sample types, demonstrat-
ing a consistent uplift in Gini. The uplift on out-of-time data is consistently around 10%. This indicates

10
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that the developed model is more effective at discriminating between good and bad credit risk applications.
Outperforming a vendor benchmark signifies a competitive advantage and superior risk-return profiles.

Table 4: Discriminatory power comparison (Gini)

Sample | Dataset | Overall | Overall | Rev Rev Internal | Internal
with Sample | Sample | Fea- Fea-
eligibil- with tures tures
ity eligibil- with

ity eligibil-
ity
XGBoost IT Train 70.3% 70.2% 67.8% 67.8% 69.3% 69.3%
(69.9%, (69.6%, (66.9%, (66.6%, (67.3%, (67.3%,
70.7%) 70.7%) 68.7%) 69.1%) 71.3%) 71.3%)
IT Test 67.9% 70.2% 69.0% 69.4% 69.3% 71.4%
(67.2%, (69.2%, (67.2%, (67.0%, (66.3%, (67.6%,
68.7%) 71.2%) 70.8%) 71.8%) 72.3%) 75.2%)
ooT 68.4% 68.4% 64.8% 64.8% 64.8% 65.4%
Test (67.0%, (67.5%, (62.0%, (62.8%, (62.6%, (62.7%,
68.4%) 69.3%) 65.2%) 66.7%) 66.9%) 68.1%)
Benchmark | IT Train 63.6% 62.7% 61.5% 60.5% 63.9% 62.3%
(63.2%, (62.1%, (60.5%, (59.2%, (62.3%, (60.2%,
64.0%) 63.5%) 62.5%) 61.8%) 65.4%) 64.4%)
IT Test 62.9% 63.0% 62.7% 62.7% 63.5% 66.0%
(63.7%, (61.9%, (60.8%, (60.1%, (60.3%, (61.9%,
64.5%) 64.1%) 64.6%) 65.2%) 66.6%) 70.1%)
ooT 62.0% 61.8% 58.3% 58.7% 59.5% 59.6%
Test (61.3%, (60.8%, (56.7%, (56.6%, (57.2%, (56.7%,
62.8%) 62.7%) 60.0%) 60.7%) 61.7%) 62.4%)
Uplift (%) IT Train 10.5% 11.9% 10.1% 12.2% 9.4% 11.2%

IT Test 8.0% 11.4% 10.1% 10.7% 9.1% 8.2%

ooT 9.1% 10.6% 9.1% 10.3% 8.9% 9.7%

Test

Regarding default rate comparison (Observed Default Rates - ODRs), the proposed model, with a similar
acceptance rate, maintains lower default rates. Among those accepted by both models, XGBoost has a 1.6%
ODR, compared to the benchmark’s 2%. This indicates efficient risk calibration, meaning the model is
better at identifying and managing risk within its accepted population. Furthermore, the proposed model
demonstrates optimized limit allocation and increased sales potential. It distributes a higher proportion of
customers to lower risk-grades with higher maximum limits compared to the benchmark, which directly drives
the increased sales potential. This ultimately generates an uplift in sales of approximately 10% compared to
the benchmark. These findings collectively highlight the substantial benefits of implementing the proposed
NAFE and BHT methodology in a real-world credit risk acquisition scenario.
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Table 5: Sample - OOT Recent: XGBoost vs Benchmark Sales Uplift
Risk Grade | Uplift (%)

A +52%
B -29%
C -5%
D -29%

Total Uplift | +10%

5 Conclusion

This study successfully demonstrated the significant advantages of integrating Noise-Augmented Feature
Selection (NAFE) with Bayesian Hyper-parameter Tuning (BHT) for enhancing credit risk acquisition scoring
using gradient-boosted models.

5.1 Summary of Key Achievements

The combined approach of Noise-Augmented Feature Selection and Bayesian Hyper-parameter tuning re-
sulted in higher discriminatory power on unseen out-of-time data compared to the widely used Recursive
Feature Elimination + Grid-Search Hyperparameter tuning approach. This indicates that the proposed
approach leads to a more robust model with superior generalization capabilities. Computational efficiency
was a notable achievement, with feature selection using NAFE converging to the same number of input
features in significantly less time (approximately 75% faster) compared to RFE. The calibrated acquisition
PDs produced using the proposed approach exhibited better accuracy (lower Brier scores) on unseen out-of-
time data, leading to more accurate and robust PD estimates. Ultimately, all these benefits translated into
a tangible business impact, specifically a 10% uplift in potential sales compared to the benchmark. This
demonstrates the direct financial value derived from the enhanced modeling approach.

5.2 Challenges

While the proposed methodology offers significant advantages, certain challenges were identified that warrant
further exploration.

Table 6: Challenges

Focus Area Key Challenge Alternate / Complementary
Options

Noise-Augmented Feature Selec- | Selecting the right number and | Boruta, Permutation Importance

tion new distribution of noise features

could be subjective and compute-
intensive on large datasets.
Bayesian Hyper-parameter Tun- | Still demanding for extremely | Hyperband, Population-Based
ing expensive objective functions or | Training

vast, poorly understood search
spaces, leading to potential over-
fitting.

5.3 Future Steps

Building upon the success of this study, several avenues for future research and development are identified:

e The NAFE process can be further refined by focusing on two key aspects: noise-distribution matching
and noise-quantity tuning. Noise-distribution matching would involve generating synthetic noise that
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mirrors the statistical properties of each feature type (e.g., Gaussian for continuous variables, shuffled
categories for one-hot encoded variables). Noise-quantity tuning would entail systematically varying
the number of noise variables to find the optimal balance between selection robustness and runtime
efficiency.

Beyond tree ensembles, the NAFE methodology can be extended to Marginal Information Value (MIV)
Logistic Regression, broadening its applicability to other widely used modeling techniques in credit risk.

A crucial future step involves automating NAFE and BHT within comprehensive model pipelines.
Embedding both feature-selection and hyper-parameter optimization modules directly into the end-to-
end modeling workflow would ensure that every model upgrade or new model benefits from consistent,
scalable optimization with minimal manual intervention.
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