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Context
The Challenge in Credit Risk

e Accurate acquisition scoring is vital for financial institutions: impacts risk,
profitability, portfolio quality, and regulatory compliance.
e Tree-based models (XGBoost, LightGBM) are powerful but face challenges:
o Irrelevant/Redundant Features: Introduce noise, increase complexity, lead
to overfitting.
o  Suboptimal Hyper-parameters: Lead to underfitting or overfitting,
hindering predictive accuracy.

Our Solution: Advanced Optimization
Techniques

e Noise-Augmented Feature Elimination (NAFE)
o  Problem: Identifying truly predictive features.
o  Approach: Introduce controlled random noise variables.

The Challenge in Credit Risk

Accurate acquisition scoring
is vital for financial institutions
impacts risk, profitability,
portfolio quality, and
regulatory compliance.

« Irrelevant/Redundant
Features: Introduce
noise, increase complexcity,
lead to overfitting.

Suboptimal Hyper-
parameters: Lead to
underfitting or overfmiting,
hindering predictive acuracy

This presentation explores
two key methods to elevate
model performance:

OUR SOLUTION: ADVANCED
OPTIMIZATION TECHNIQUES

Noise-Augmented Feature
Selection: NAFS)

Problem: Identifying truly
predictive features.

Approach: Introduce controlled
random noise variables, hindering
predictive accuracy to set robust
filtering threshhold.

Benefit: Builds parsimoious.
interpretable models, reducing
overfitting.

Bayesian Hyper-parameter
Tuning (BHT)

Problem: Efficiently finding

optimal model configuratiofen’ .

Approach: Intelligent, directed
search (vs. exhaustive/random)

WHY THIS MATTERS:
THE IMPACT

NAFS + BHT:

A combined approach to
unlock full potential of
tree-based models

Outcome:

Leads to mracurate, stable
and interpretable credit
risk acquisition scores.

Result:

Better lending decisions
and improved financial
outcomes

Outcome: Leads.

more accurate, stable,
and interpretable credit
risk acquisition scores.

Why This Matters: The Impact

e NAFE + BHT: A combined approach to unlock full potential of
tree-based models.

e Outcome: Leads to more accurate, stable, and interpretable credit
risk acquisition scores.

e Result: Better lending decisions and improved financial outcomes.

o Mechanism: Compare real feature importance against noise feature
importance to set a robust filtering threshold.

o  Benefit: Builds parsimonious, interpretable models, reducing
overfitting.

e Bayesian Hyper-parameter Tuning (BHT)

o  Problem: Efficiently finding optimal model configurations.

o  Approach: Intelligent, directed search (vs. exhaustive/random).

o Mechanism: Builds a probabilistic model of the objective function to
suggest optimal next parameters.

o Benefit: Faster convergence to optimal settings, significantly reducing
computational cost.
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Literature Review
Impact of Feature Selection (FS)

e Addresses High Dimensionality & Redundancy: Credit risk models often face noise and irrelevant features leading to overfitting.
o Wong and Smith (2019): Emphasize feature engineering's critical role in optimizing ML models for credit risk.
o Patel and Brown (2021): Discuss interpretability challenges alleviated by feature selection.
e Improves Interpretability & Performance: Filtering features leads to more parsimonious and understandable models.
o  MDPI (2023): Highlights various FS methods (univariate, RFE, feature importance, information value) for improving accuracy by reducing noise.
o arXiv (2023): Demonstrates positive contribution of FS on ML methods in credit scoring.
e Noise-Augmented Feature Elimination (NAFE): Reinforces filtering by establishing statistical thresholds against noise variables to identify truly
informative features.
o  Gharoun et al. (2023): Introduced "Noise-Augmented Boruta," an innovative approach incorporating noise into shadow variables for enhanced,
accurate feature selection.

Impact of Bayesian Hyper-parameter Tuning (BHT)

e Optimizes Tree-based Models (XGBoost, LightGBM): Addresses the challenge of tuning numerous hyper-parameters.
e Enhances Efficiency & Performance: Intelligently explores the hyper-parameter space, leading to faster convergence to optimal solutions.
o  Preprints.org (2025): States hyperparameter optimization is essential for maximizing predictive performance and computational efficiency in credit
risk modeling. Shows Optuna (Bayesian framework) significantly outperforms Grid/Random Search in speed for XGBoost/LightGBM.
ResearchGate (2024): Applies Bayesian optimization (TPE) to tree-based models for fraud detection, with direct applicability to credit risk.
Jenatton et al. (2017): Discusses leveraging dependency structures in optimization domains for more efficient search, relevant for complex
hyperparameter spaces.
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Methodology: Noise Augmented Feature Elimination (NAFE)
|. Data Preparation & Noise Augmentation

e DataLoading: Load historical credit risk data, segmenting into training and validation sets. This includes relevant features and the target variable (e.qg.,
default status).

e Random Noise Feature Introduction: Augment the dataset with a predefined number of synthetic random noise features. These features are generated
with no inherent predictive power.

Il. Noise-Augmented Feature Filtering

Initial Model Training: Train an initial XGBoost or LightGBM model on the augmented training data (including real and noise features) using a predefined
set of hyperparameters and early stopping.
Feature Importance Calculation: Calculate feature importance for all features (real and noise). This can be based on:

o  Gain: The average gain of splits where the feature is used.

o  SHAP (SHapley Additive exPlanations): Mean absolute SHAP values, providing a measure of feature contribution to model output.
Zero Importance Removal: Remove all features with a feature importance of 0.
Noise Thresholding: Identify features whose importance is less than or equal to the maximum importance observed among the random noise features.
These features are considered non-informative and are marked for removal.

lll. Correlation-Based Feature Elimination (Optional)

e Correlation Analysis: For the remaining non-categorical features, compute the pairwise correlation matrix.
e Redundancy Handling: If a pair of features exhibits a correlation above a defined threshold (e.g., 0.5), the feature with the lower importance (as
determined in Step 11.2) from that pair is identified for removal. This step helps reduce multicollinearity and further streamlines the feature set.

© 2025 Revolut. All rights reserved. Vi



Methodology: Bayesian Hyperparameter Tuning with Optuna
|. Objective Function Definition

Model Agnostic Objective: An objective function (objective_xgb or objective_lgbm) is defined to optimize either XGBoost or LightGBM models.
Hyperparameter Search Space: Within this function, Optuna's trial.suggest_ methods are used to define the search range for key hyper-parameters (e.qg.,
learning_rate, max_depth, subsample, colsample_bytree, regularization terms). This allows Optuna to intelligently explore the parameter space.
e Cross-Validation: To ensure robust evaluation, Stratified K-Fold Cross-Validation (N_FOLDS) is performed for each trial. The model is trained on multiple
folds, and its performance is averaged.
e Early Stopping: Each model training within a trial incorporates early stopping based on the Area Under the Curve (AUC) on the validation set, preventing
overfitting during the individual model training phase.
Performance Metric: The objective function returns the average validation AUC across all folds, which Optuna aims to maximize.
Pruning Heuristics: To accelerate the search and avoid unproductive trials, two pruning criteria are implemented:
o  Overfitting Index: Trials exhibiting an excessive difference between training AUC and validation AUC (indicating overfitting) are pruned.
o  Coefficient of Variation (CV) of AUC: Trials with high standard deviation of AUC across folds (indicating instability) are pruned.

Il. Optuna Study Execution

e Study Creation: An Optuna study object is initialized with a direction="maximize" setting, as the goal is to maximize the validation AUC.

e Optimization: The study.optimize method is called, passing the objective function and the desired number of n_trials. Optuna intelligently selects
hyper-parameter combinations for each trial based on the results of previous trials, using a Tree-structured Parzen Estimator (TPE) algorithm.
Parallelization (n_jobs=NCPUS) is used to speed up the process.

lll. Training with Best Hyper-parameters

Best Trial Extraction: After the Optuna study completes, the optimal hyper-parameters are retrieved from the study.best_trial.
Final Model Training: A final XGBoost or LightGBM model is trained on the entire training dataset (or on the combined train and test sets, as indicated in
the code flow) using these best-found hyper-parameters and the feature set identified from the previous feature selection step.

e Performance Evaluation: The final model's performance (AUC and confidence intervals) is re-evaluated on both the training and a separate
validation/test set to confirm generalization capabilities.

© 2025 Revolut. All rights reserved. 8
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Business Case PoC: Credit Card Acquisition Model

Objective: To enhance credit risk acquisition scoring for credit card applicants using advanced machine learning techniques, focusing on
tree-based models.

Data Overview (Retro Sample)

Overall Sample: 2 million records (UPLs, CCs, Overdrafts), including ~300k Revolut users.

Credit Card (CC) Sample: 900k records, of which ~140k are Revolut users, with ~65k having opened a facility after joining Revolut.
Performance Window: Facilities granted Jan 2020 - Jul 2022, with performance tracked up to 48 months.

Model Scope: Models primarily built on the Credit Card (CC) Sample.

Methodology Key Enhancements

e Feature Selection:

o Noise-Based Feature Selection: Introduced 50 noise
features; features with SHAP importance noise
features were eliminated.

e Hyper-parameter Tuning: Optuna: Employed Bayesian
optimization for efficient and robust hyper-parameter tuning
of models.

e Training Datasets Scenarios:
o  All users (Revolut + Non-Revolut): With/Without eligibility checks (Bureau
features).
Revolut users: With/Without eligibility checks (Bureau, Email/Device features).
Revolut users with internal history: With/Without eligibility checks (Bureau,
Email/Device, Transaction features).
e Sample Split:
o Train/Test (80/20): Data from August 2020 to March 2022*
o Out-of-Time (OOT) Recent: Data from April 2022 to July 2022 for final
validation.
e Algorithms: XGBoost, LightGBM.

Model Selection & Evaluation

Metrics: Performance evaluated using the Gini score on Train, Test, and Out-of-Time (OOT)
samples and benchmarked against a vendor score. * In-time Train includes origination cohort overlapping with Covid period partially due to limitations of retro

data. However model performance is benchmarked on multiple out-of-time periods including pre-covid, covid

and most-recent. Proposed solution outperformed benchmark on all oot periods. ‘
© 2025 Revolut. All rights reserved. 10 \



Results: NAFE vs standard RFE

Compared Noise Augmented Feature Elimination (NAFE) against standard Recursive Feature Elimination (RFE) based on model discriminatory
power and computational efficiency. To ensure a like-for-like comparison, steps were taken to ensure both models have similar number of
features at the end of the feature selection process. The feature selection was compared for XgBoost and LightGBM algorithms on a pre-defined

same of hyperparameters.

Key Findings

e Higher discriminatory power - The feature selection process employing NAFE results in a higher Gini value compared to the feature selection process

using RFE.

o  The performance uplift is observed for both XgBoost and LightGBM.

o  For XgBoost, the model with NAFE outperforms the model with RFE on In-time Train (+0.9% abs.) and Out-of-Time Test (+0.3% abs). The

overall absolute uplift is +0.4%

o  For LightGBM, the model with NAFE outperforms the model with RFE on In-time Train (+5.4% abs.) and Out-of-Time Test (+1.0%). The overall

uplift is +2.1%

e Lower computation time - The NAFE process converges to similar number of features in a much less time compared to RFE. For XgBoost and

LightGBM, the average reduction in feature selection time is ~75%

Discriminatory power assessment - Feature Selection
Algorithm FS Process Time tc(:ni:::‘r:)pletlon Gini (In-Time Train) Gini (In-Time Test) Gini (0_:_1:;3f-T|me
XGBOOST NAFE 5.5 0.767 0.669 0.639
XGBOOST RFE 23.0 0.758 0.669 0.636
LGBM NAFE 5.0 0.750 0.655 0.624
LGBM RFE AN 0.696 0.656 0.614

© 2025 Revolut. All rights reserved.
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Results: Insights into Bayesian Hyperparameter Tuning (BHT) with Optuna

Our implementation of Bayesian HPT using Optuna has significantly optimized the performance of our tree-based credit risk acquisition model.
The visualization of the optimization process provides key insights into the hyper-parameter space and the efficiency of Optuna's search.

l. Optimization History Il. Hyperparameter Importances

e Rapid Convergence: The e Key Drivers:
"Optimization History Plot" SRR The
demonstrates Optuna's ability to "Hyperparamet §
quickly converge towards the optimal er Importances" E
objective value (AUC). chart reveals

Hyperparameter Importances

e  Stability: After approximately 50-100 that
trials, the objective value stabilizes, learning_ra —
suggesting that Optuna has effectively te and ipesperomaeeporighes
identified a highly optimized region. num_round

are by far the most influential hyper-parameters, accounting for 72%

lll. Parallel Coordinate Plot and 20% of the importance respectively.
e Relationships between hyper-parameters and the objective value. Darker .
lines represent higher objective values. IV Sllce PlOtS
e lllustrative Trends:
Parallel Coordinate Plot { ] IndiViduaI
highest AUCs are clustered For

around the upper end of the

scale (e.g., 0.840 to 0.843).
o learning_rate: Optimal

learning_rate values

learning_rate

and num_round, a
clear trend shows

that as these

appear to be in around 0.05. parameters
o num_round: Higher num_round values (towards 350) are associated with approach their
better performance, especially when paired with appropriate learning rates. optimal ranges, the
o max_depth: Values around 5 seem to contribute to higher objective values. model performance

improves.




Results: Enhanced performance using NAFE + BHT

Compared the combined impact of Noise Based Feature Elimination (NAFE) and Bayesian Hyperparameter tuning (BHT) with Optuna against
the widely used Recursive Feature Elimination (RFE) combined with Grid-Search Hyperparameter tuning. For an even comparison, similar
number of hyperparameter tuning trails (~500) was employed for Optuna and Grid-Search over the same range of hyperparameters. The model
discriminatory is compared based on Gini. The rank-order scores were calibrated on a default@12M target using the same calibration technique.

Key Findings

e Discriminatory power - The modeling approach with NAFE +
Optuna generates a higher discriminatory power compared to the
modeling approach with RFE + Grid-Search.

o  This is evidence by higher Gini values on In-time Test
(+0.2% abs) and Out-of-time Test (+0.5% abs).

e Robustness - The model with NAFE + Optuna has a better
generalisation power and more robustness compared to the model
with RFE + Grid-Search.

o This is evidence by the fact that NAFE + Optuna has a lower

Gini on In-time Train but higher Gini on IT Test and OOT Test.

This shows that RFE + Grid-search overfits and has weak
generalisation power, while NAFE + Optuna is more robust
on unseen data.

e PD Accuracy - The accuracy of the acquisition PDs for both
approaches is measured using Brier score and compared against
each other.

o  The model with NAFS + Optuna has a higher Brier score on
IT Train, but same score on IT Test and lower score on OOT
Test.

o  This evidences that the proposed approach has a better PD
accuracy than the approach with RFE + Grid-search on
unseen and out-of-time data.

© 2025 Revolut. All rights reserved.

XGBOOST [NAFS
XGBOOST [RFE

Discriminatory power assessment - FS + HPT

Gini Gini Gini
m HPTProcess | (1-Train) | (IT-Test) | (OOT-Test)
XGBOOST |NAFS 0.734 0.672 0.644
XGBOOST GridSearchCV 0.875 0.670 0.639

PD Accuracy Assessment

Brier Score | Brier Score | Brier Score Bassline| Baselinia| Baseliiia

FS Process | HPT Process | (IT Train) (IT Test) | (OOT Test) IT Train | IT-Test | OOT Test
Model Model Model

0.041 0.038 0.047| 0.049| 0046 0.055

GridSearchCV 0.039 0.038 0.049 0.049 0.046 0.055
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Impact Assessment: Model Performance & Business Uplift

Proposed credit risk acquisition model,
leveraging NAFE and Bayesian HPT,
demonstrates significant uplift in
discriminatory power and tangible business
benefits when compared against the
benchmark score.

|. Discriminatory Power

e Consistent Uplift in Gini: Proposed model
consistently outperforms the benchmark
across all tested sample types. The uplift
on out-of-time is consistently around
10%. This indicates that our model is more
effective at discriminating between good
and bad credit risks.

II. Calibrated PD Scores: lower default rates

e Default Rate Comparison (ODRs): Proposed model, with a similar acceptance rate, maintains lower default rates.

2%. This indicates efficient risk calibration.

lll. Impact on Sales

Dataset

Sample Overall o::;?gil‘;:::h Rev Sample Reveslizrir:)?llicteywith Internal Features Internaell EZT::;S with
IT Train 70.3% (69.9%, 70.7%)| 70.2% (69.6%, 70.7%) | 67.8% (66.9%, 68.7%) | 67.8% (66.6%, 69.1%) | 69.3% (67.3%, 71.3%)| 69.3% (67.3%, 71.3%)
XGBoost Gini |IT Test 67.9% (67.2%, 68.7%)| 70.2% (69.2%, 71.2%)| 69.0% (67.2%, 70.8%)| 69.4% (67.0%, 71.8%)| 69.3% (66.3%, 72.3%)| 71.4% (67.6%, 75.2%)
OOT Test | 68.4% (67.0%, 68.4%)| 68.4% (67.5%, 69.3%) | 64.8% (62.0%, 65.2%)| 64.8% (62.8%, 66.7%)| 64.8% (62.6%, 66.9%)| 65.4% (62.7%, 68.1%)
IT Train 63.6% (63.2%, 64.0%)| 62.7% (62.1%, 63.5%)| 61.5% (60.5%, 62.5%)| 60.5% (59.2%, 61.8%)| 63.9% (62.3%, 65.4%)| 62.3% (60.2%, 64.4%)
zfr:‘fhmark IT Test 62.9% (63.7%, 64.5%) | 63.0% (61.9%, 64.1%) | 62.7% (60.8%, 64.6%)| 62.7% (60.1%, 65.2%)| 63.5% (60.3%, 66.6%)| 66.0% (61.9%, 70.1%)
OOT Test 62.0% (61.3%, 62.8%)| 61.8% (60.8%, 62.7%)| 58.3% (56.7%, 60.0%)| 58.7% (56.6%, 60.7%) | 59.5% (57.2%, 61.7%)| 59.6% (56.7%, 62.4%)
IT Train 10.5% 11.9% 10.1% 12.2% 9.4% 11.2%
Gini Uplift (%) | IT Test 8.0% 11.4% 10.1% 10.7% 9.1% 8.2%
OOT Test 9.1% 10.6% 9.1% 10.3% 8.9% 9.7%
Sample - OOT Recent
XGBoost v/is Benchmark - Sales uplift
Risk Grade Uplift (%)

Among those accepted by both models, XGBoost has a 1.6% ODR (Observed Default Rates), compared to benchmark's " o
B -29%
c -5%
D -29%
Total Uplift +10%

e Optimized Limit Allocation & Increased Sales Potential: Proposed model distributes a higher proportion of customers

to lower-risk grades with higher maximum limit compared to the benchmark, which drives the increased sales
potential. This generates a Sales Uplift of +10% compared to the benchmark.

© 2025 Revolut. All rights reserved.
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Conclusion: Enhancing Credit Risk Acquisition Scoring

Summary of Key Achievements

e Higher Discriminatory Power: The combined approach of Noise Augmented Feature Selection and Bayesian Hyper-parameter tuning resulted in a
higher discriminatory power on unseen out-of-time data compared to the widely used approach - Recursive Feature Elimination + Grid-Search
Hyperparameter tuning. This indicates the proposed approach led to a more robust model with better generalization.

Computational Efficiency: The feature selection using NAFE converged to same number of input features in a much less time (-75%) compared RFE.
PD Accuracy: The calibrated acquisition PD produced using the proposed approach had a better accuracy (lower Brier scores) on unseen out-of-time
data leading to more accurate and robust PD estimates.

e Tangible Business Impact: All the above benefits translated into a +10% uplift in potential sales compared to the benchmark.

Challenges
Focus Area Key Challenge Alternate / Complementary Options
Noise-Augmented Feature Selecting the right number and distribution of noise features can be subjective * Boruta
Selection and compute-intensive on large datasets. * Permutation Importance
Bayesian Hyper-parameter Tuning  Still demanding for extremely expensive objective functions or vast, poorly * Hyperband

understood search spaces, leading to potential overfitting. * Population-Based Training

Future Steps

e Refine the NAFE Process
o  Noise-Distribution Matching: Generating synthetic noise that mirrors the statistical properties of each feature type (e.g., Gaussian for continuous
variables, shuffled categories for one-hots).
o  Noise-Quantity Tuning: Systematically varying the number of noise variables to find the sweet spot between selection robustness and runtime.
e Extend NAFE to MIV Logistic Regression
o  Applying noise-augmented feature elimination coupling it with Marginal Information Value (MIV) in Logistic Regression, broadening applicability
beyond tree ensembles.
e Automate NAFE and BHT in Model Pipelines
o Embedding both feature-selection and hyper-parameter optimization modules directly into the end-to-end modeling workflow, ensuring every

upgrade or new model benefits from consistent, scalable optimization with minimal manual intervention.
© 2025 Revolut. All rights reserved. 16 $ \
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