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3. FICO’s innovation
addresses the
intferpretability and
explainability issues with a
novel neural network training
method and construction of
human fraceable and
readable reasons associated
with each hidden feature.

2. Hidden layer(s) is a key
predictive component of @
neural network, but fully
inferprefing and explaining
its properties and typically
dense connections is very
challenging.
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Neural Networks: highly predictive but very challenging to interpret and explain
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Neural Networks: intferpretability vs. explainability
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Interpretability:

architectural fransparency and
sparsity where only a limited
number of inputs (e.g., maximum
of 2) can connect into each
hidden feature
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Explainability:

deterministic set of human
fraceable and readable reasons
that can explain the meaning of
each hidden feature




Regulatory Requirements
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* Equal Credit Opportunity Act in the United States and General Data Protection Regulation (GDPR) in Europe require
creditors to provide applicants who are denied credit with explanations regarding their rejected application.

* “Weregret toinform you that our Al system rejected your application” ... will not be considered as a valid explanation.

* For credit risk decisions and fo shiftf from the use of scorecards to neural networks, we need to be able to understand
hidden features and enable less complexity in explanation by providing no more than 3-4 reasons per score.



Explainable Al: current approaches, challenges and motivation for our research
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Hidden Layer: combinatorial explosion of reasons for a hidden feature value
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* We define 3 tanh regions, as activation
states, to minimize complexity of
explanation

* pre-activation = feature value x weight

tanh(pre-activation term) <= -0.95

* Evenfor arelatively
“simple” HF with 6-
input connections,
codifying and
assigning reasons fo
each of the /29

human
3% possible

activation states
and reasons for
the value of HF

activation states would
beintractable to any






Neural Networks: assigning reasons to activation states, example #1

tanh(2.30) = 0.98 tanh(1.90) = 0.96
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Neural Networks: assigning reasons to activation states, example #2

tanh(=2.30) = —-0.98 tanh(0.90) = 0.72
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Neural Networks: assigning reasons to activation states, example #3 of a mixed state

tanh(—2.30) = —0.98 tanh(2.00) = 0.96
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Neural Networks: enforcing additional explainability constraints at the output layer

* Inregulatory situations (e.g., credit risk), automated decisions produced by machine learning models are often constrained fo no
more than 3-4 reasons to provide o consumers to enable less complexity in explanation

* Inadensely connected output node within a neural network, all hidden features cooperate to provide a response at the output

* To bring explainability o the forefront of a neural network, we need to accentuate the learning process of a limited number of
hidden features that capture the most significant input interactions when generating a response to the incoming data



Neural Networks: enforcing additional explainability constraints at the output layer

» pre-activation = feature value x weight




Neural Networks: enforcing additional explainability constraints at the output layer

* Set parameter N to meet the prescribed number of explanations associated with automated decision making
based on industry specification of number of reasons. Let's assume N = 3

* Rank order hidden features HF; HF, HF, HF, HF; HF, by the magnitude of the pre-activation terms’ absolute
values

* are the strongest drivers of the output node’s score




Neural Networks: reinforcing gradients of the reason space dimensionality
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pre-activation terms NOT conforming
with the explanation space of size N = 3



Neural Networks: inference time — generating reasons for top N=3 hidden features

»  Score = 950 -> high default risk
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THANK YOU!

krzysztofnalborski@fico.com

3. FICO’s innovation addresses the
interpretability and explainability issues
with a novel neural network fraining
method and construction of human
fraceable and readable reasons
associated with each hidden feature.
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Appendix:

hitps://www.fico.com/blogs/deep-dive-how-
make-black-box-neural-networks-explainable

https://www.fico.com/blogs/fighting-bias-how-

interpretable-latent-features-remove-bias-
neural-networks
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