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Abstract

Basel III imposes strict guidelines on large banks that develop statistical models to
estimate their risk-weighted assets (RWAs). Banks are required to quantify addi-
tional buffers, called a margin of conservatism (MoC), to protect against model risk.
Setting the appropriate confidence level for the MoC is, however, non-trivial, and
is frequently the topic of debate between banks and regulators. In this paper, we
introduce the quantile scaling factor (QSF), a novel tool for regulatory model risk
management. The QSF is derived under an asymptotic single risk factor (ASRF)
model applied to estimated credit portfolio RWAs. An empirical study on a re-
alistic, synthetic bank loan book applies the QSF framework and the results are
discussed. We find that errors in RWA estimates driven by idiosyncratic model risk
factors and loan books with more uniform portfolio RWA concentrations benefit
from high model risk diversification. This lowers the confidence level required per
portfolio’s MoC to attain a bank-wide confidence level set by the bank’s own model
risk appetite. Model risk diversification strengthens further the more portfolios a
bank has in its loan book. The presented QSF framework provides risk managers
with a simple tool to ensure their bank’s model risk appetite is appropriately met.
However, given that no two loan books are the same, it complicates regulatory
benchmarking exercises and challenges current practices by supervisory authorities
like the ECB.
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1 Introduction
Banks that fall under ECB supervision are required to hold capital to cover for un-
expected losses in their portfolios. For a given portfolio, this capital, derived from
its risk-weighted assets (RWA), is a product of three primary risk parameters esti-
mated via the means of internally developed statistical models. As the robustness
and stability of the financial system is of paramount importance to the regulators,
the Basel framework envisions that these estimates have applied to them a margin
of conservatism (MoC) to ensure RWAs are sufficiently conservative and protected
against model risk (?).

Defining what “sufficiently conservative” is, however, not trivial. While a 95%
confidence level may be appropriate for a single portfolio, aggregating MoCs across
multiple portfolios complicates the picture at the total bank level. Bank-wide model
risk strategy should instead be anchored to a target confidence level for the total
loan book, aligned with the bank’s model risk appetite. This target, together with
the composition and risk profile of the portfolios, determines the necessary MoC
coverage per portfolio to ensure consistency and robustness at the aggregate level.

Within industry, the impact of arbitrary MoC coverage levels across portfolios is
well understood. The larger the coverage, the more bolstered the bank’s capital
buffer, the more protected the bank is from model risk. However, if this coverage
is unnecessarily wide, the bank hinders its own business practices by limiting its
liquidity and supply to the credit market. With no official regulatory guidance
on setting this interval, while subtle, the best choice of coverage level for a credit
lending institution should receive more attention in both academia and industry.

The ECB defines model risk as “the risk of error due to inadequacies in financial
risk measurement and valuation models” (?). While there exists adequate academic
research on the topic of model risk, this has almost exclusively been focused mar-
ket risk measures such as the Value-at-Risk (VaR) and Expected Shortfall (ES)
(??????????). Some focus in the literature has directed itself to model risk for
credit portfolios (??????), however these typically still use tail risk measures of
portfolio losses to assess model inaccuracies.

Literature on MoC quantification and the impact of model risk on IRB models
remains scarce and underdeveloped. ? proposes a structured framework that
decomposes model risk into two components, risk differentiation and calibration
error, arguing for the integration of MoC directly into model outputs to avoid
over-conservatism from uncoordinated parameter-level adjustments. ? reinforces
this perspective by addressing the challenge of data representativeness, particularly
under crisis conditions, and advocates for MoC adjustments rather than data exclu-
sions to ensure robustness in model calibration. The AIFIRM Position Paper No.
13 (?) defines MoC as the product of a calibrated factor and the standard deviation
of the estimator. The paper explores multiple estimation techniques and calibrates
the factor via simulation to ensure that model risk is addressed proportionately,
without duplicating conservatism already embedded in regulatory capital formu-
las. ? focus specifically on the asymptotic single risk factor (ASRF) framework and
demonstrate that estimation error in PD leads to systematic underestimation of risk
measures. Their proposed correction is based on adjusting the PD using the upper
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bound of a confidence interval and ensures the probability of observing exceptions
aligns with the targeted confidence level. ? proposes a probabilistic method for
quantifying an MoC addressing missing data in calibration samples, and is the only
research that discusses the arbitrary choice of confidence level for the MoC. While
his approach satisfies key statistical properties (e.g., unbiasness, monotonicity) and
is applicable at both score and factor levels, Biche’s approach avoids the need to
define the significance level of the MoC. Such an approach thus provides limited
utility for a bank’s general risk management practices.

While existing literature offers various methodologies for quantifying an MoC for
risk parameters, none directly address the challenge of setting the confidence level
within a rigorous framework that enables banks to align MoC estimation with their
overarching model risk appetite across portfolios. This gap limits the ability to
systematically balance regulatory conservatism with internal risk tolerance. In this
paper, we develop a consistent mathematical framework that formalises interval
selection by linking it directly to a bank’s model risk appetite. Specifically, we derive
a closed-form quantile scaling factor (QSF) between a target bank-wide coverage
level and the implied coverage level required per portfolio to achieve it. Through
simulation, we show that the QSF is driven by three key characteristics of a bank’s
loan book: (i) correlations in RWA estimation errors; (ii) RWA concentration across
portfolios; and (iii) the total number of portfolios. The central claim of this paper
is that model risk exhibits a degree of diversification across portfolios, meaning
that individual model uncertainties tend to offset each other when aggregated at
the bank-wide level. As a result, the confidence level required for the MoC at the
portfolio level can be lower than the target confidence level set for the bank-wide
RWA. This gives risk managers a simple tool to ensure RWA coverage levels best
reflect the bank’s own unique exposure to model risk. However, this challenges
current practices by regulatory authorities when benchmarking the adequacy of
coverage levels across banks under their supervision. Current model inspection
exercises conducted by authorities such as the ECB tend to impose arbitrary and
subjective expectations of capital conservatism levels, which, as this work shows, is
too far detached from the model risk to which each bank is exposed.

The paper is structured as follows. Section ?? introduces the main concepts of
model risk and how this may diversify across a bank’s set of portfolios. Section ??
defines the variables with their statistical properties necessary for deriving the QSF
in Section ??. Section ?? utilises simulations to investigate the main characteris-
tics that influence the QSF. Section ?? applies the QSF framework to a synthetic
bank loan book with set model risk appetites. The loan book is generated using
aggregate statistics published by supervisory authorities, and serves as a realistic
example of how to estimate the QSF in practice. Section ?? discusses the results,
provides further guidance for practitioners, and highlights topics for future research.
Section ?? closes the paper with concluding remarks.

2 Model Risk Diversification in the Loan Book
Credit portfolios contain exposures of specific asset classes or geographies, each
influenced by their own unique systemic credit risk factors, e.g., mortgage portfolios
in the US versus Australia tied to each country’s economic cycle, or corporate
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loans tied to industrial cycles. On the other hand, idiosyncratic credit risk refers
to borrower-specific risk, such as firm-level distress or default, which is largely
uncorrelated with broader economic conditions. It is essential to distinguish this
credit risk from risks arising due to the models themselves. Model risk specifically
refers to the possibility that RWA estimates are inaccurate due to flaws in model
design, data, and/or calibration.

The traditional credit risk literature defines idiosyncratic and systemic credit risk
in a way that links them through an asset correlation. This is known as the asymp-
totic single risk factor (ASRF) model, whereby all borrowers in a portfolio share
this fixed correlation with the systemic factor. In this work, we will stick to the
same terminology for model risk, and the framework developed will encapsulate an
underlying ASRF model. Put bluntly, this implies that all main results are de-
rived by keeping the asset correlation “submerged” within each RWA model error.
Explicitly, model risk can be decomposed into:

• Idiosyncratic model risk, such as missing risk drivers or regressors in develop-
ment datasets, or poor data quality affecting specific portfolios.

• Systemic model risk, such as a consistent bias-correction methodology across
all portfolios, or statistical uncertainty in risk parameter calibration, especially
when all portfolios share the same calibration window or modeling assump-
tions.

A summary of the distinctions between the types of risk with some examples are
provided in Table ??. Below we discuss several tangible examples of model risks and
how they potentially interact across portfolios. Unlike credit risk, which reflects the
economic exposure of borrowers and sectors, model risk affects the measurement of
that exposure through the modeling process. While model risk introduces uncer-
tainty in RWA estimates, this uncertainty does not necessarily accumulate at the
bank-wide level. As will be argued and mathematically shown in later sections,
model risk errors across portfolios diversify, meaning that individual estimation
uncertainties tend to offset each other when aggregated. This diversification effect
implies that the confidence level required for the MoC at the portfolio level tends
to be lower than the target confidence level set for the bank-wide RWA. This allows
for a more efficient and risk-sensitive allocation of conservatism, consistent with the
bank’s overall model risk appetite and capital adequacy goals.

Consider a bank with multiple credit portfolios, three of which are: mortgages in
Spain, corporate loans in Germany, and SME exposures in Poland. Each portfolio is
developed using its own dataset, and while all models follow a common framework,
the specific risk drivers used (e.g., regional unemployment rates, sector-specific in-
dicators) vary. Suppose that in the mortgage model for Spain, a relevant risk driver
(e.g., housing price index) is omitted due to data limitations. This introduces an
idiosyncratic bias in the RWA estimate for that portfolio. The corporate loan model
in Germany might omit a different risk driver (e.g., industrial production index),
while the SME model in Poland might suffer from noise or outdated information in
borrower-level financial ratios. Such model errors are independent, meaning the in-
dividual biases tend to average out on the aggregated bank-wide RWA level. This is
analogous to the law of large numbers, i.e., independent errors with zero mean and
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Dimension Credit Risk Model Risk

Idiosyncratic Borrower-specific default/loss
risk (e.g., firm-level distress)

Portfolio-specific model flaws
(e.g., missing risk driver values,
poor data quality)

Systemic Economy-wide or sector-wide
downturns affecting many bor-
rowers

Shared modelling assumptions
or calibration uncertainty across
portfolios

Nature of Risk Economic reality of borrower ex-
posures

Uncertainty in the model mea-
surement of losses

Impact on RWA Drives actual credit losses and
portfolio risk

Affects accuracy and reliability
of RWA estimates

Regulatory
Treatment

Countercyclical buffer, stress
testing

Margin of Conservatism (MoC),
model validation and bench-
marking

Table 1: Comparison of credit and model risk dimensions.

finite variance will converge toward a stable aggregate estimate. As will be shown
in Section ??, when assuming independence this aggregate uncertainty decreases
with the number of portfolios.

Suppose now that the bank uses a consistent methodology to backscore default
events across all its wholesale corporate portfolios, a common industry practice.
This is then applied to historical data where default triggers, such 90 days-past-
due (DPD) or insolvency filings, are not consistently recorded. The bank is thus
required to infer default statuses retrospectively. If the backscoring algorithm sys-
tematically mis-identifies defaults due to, say, conservative thresholds or missing
auxiliary indicators, then this bias will affect all corporate portfolios in a similar
way. This shared source of error induces a systemic model risk. In reality, these
backscored default rates will cover different historical observation windows, as no
two portfolio development datasets will exactly overlap. Thus, not only are sys-
temic model errors present, but each probability of default (PD) estimate will have
a varying degree of exposure to the bank’s systemic model risk factor. Nonethe-
less, these correlated biases in the estimation of default rates will propagate into
correlated errors in the RWA calculations. Unlike idiosyncratic model risk, which
may cancel out when aggregated, these correlated errors will reinforce each other
at the bank-wide level. This dampens the diversification effect and implies that
the confidence level required for the MoC per portfolio be closer to the bank-wide
confidence level to maintain robustness.

The degree of model risk diversification across portfolios is also influenced by the
concentration of RWA across a bank’s loan book. When RWAs are heavily concen-
trated in a few portfolios, model risk errors from those portfolios dominate the ag-
gregate uncertainty, weakening the diversification effect. Conversely, when RWAs
are more evenly distributed, individual model errors contribute more uniformly,
allowing their effects to offset each other more effectively. As demonstrated in Sec-
tion ??, maximum diversification occurs when RWAs are uniformly concentrated
across portfolios.
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In the following section, we combine all concepts introduced in the above discussions
into a mathematical framework. This leads us to the derivation of the quantile
scaling factor (QSF) in Section ??, which allows for a one-to-one mapping of the
portfolio MoC confidence level to the bank-wide confidence level, and vice versa.

3 Theoretical Framework
The Basel framework envisions that banks should hold capital to cover for un-
expected losses of their loans (?), known as the Common Equity Tier (CET) 1
capital, whereas expected losses are meant to be captured by the bank’s provisions
(?). Given a loss distribution for a portfolio, unexpected losses are defined here
as the difference between the loss at 99.9th percentile and the expected loss. The
formula used to compute this is directly provided by the regulatory risk-weighted
assets (RWA) formula (?).

Using historical data, a bank develops regulatory credit risk models for its loan
portfolios, the final estimates of which are applied to current and future portfolio
snapshots. These models predict a given loan’s probability of default (PD), loss
given default (LGD), and exposure at default (EAD). Specifically, a loan is scored
by a ranking function, followed by a mapping to a calibrated through-the-cycle
(TTC)1 estimate for all three risk parameters (?, ?). These estimates then feed
into the Basel formula, producing an RWA for the loan. The portfolio’s RWA is
taken as the sum of its individual loans’ RWAs, which then implies that the bank’s
total RWA is the sum of the RWAs per portfolio.

3.1 An ASRF Model for Portfolio RWA Estimates
Fix a probability space (Ω,F ,P). Index portfolios in the bank’s loan book by
i = 1, . . . , N . Let the idiosyncratic and systemic model risk factors be defined
respectively as

ξi, ψ ∼ N (0, 1), ∀i

where each portfolio has its own systemic model risk factor loading ϕi.

Definition 3.1 (Portfolio Risk-Weighted Assets). The modelled RWA for portfolio
i is defined as

Ri = µi + σiηi, (1)
ηi =

√
1− ϕiξi +

√
ϕiψ, (2)

with Ri ∈ (0,∞) and ηi ∼ N (0, 1) ∀i.

The model error ηi is described by an ASRF model where ξi is the idiosyncratic
model risk factor and ψ is the systemic model risk factor, both standard normally

1The terminology “through-the-cycle” is one commonly referred to in the regulation and industry and
is the topic of many debates about its interpretation. For the purposes of this work, we adopt the notion
of TTC understood as a risk parameter estimate that is “unconditional of the PIT (point-in-time) state
of the economy”.
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distributed with asset correlation ϕi. Hence, the ηi are identically distributed stan-
dard normal errors with

E [ηi] = 0, V [ηi] = 1, Cov [ηi, ηj ] =
√
ϕiϕj ≡ ρij > 0.

This is not a typical ASRF setup. Each portfolio’s RWA estimate will compose of
a mixture of idiosyncratic and systemic model errors, but the dependence of each
model to the systemic model risk factor is unique to each portfolio. This captures
the nature of the problem. As such, the measured errors in portfolio RWAs due
to ψ are scaled per portfolio by σi, as well as each portfolio’s co-dependence on
the systemic model risk factor through ϕi. Naïvely, the ρij can be thought of
as a parameter that captures the overlap in systemic model risk exposure of two
modelled RWA estimates for portfolios i and j. As we will see in later sections, we
can derive all necessary relationships without explicitly relying on the underlying
ASRF model.

3.2 Asymptotic Normality
While a consequence of the ASRF model, it is necessary to explicitly state the
asymptotic distribution of modelled portfolio RWAs.

Theorem 3.1 (Portfolio-level asymptotic normality). Let θ0 = (PD0, LGD0, EAD0, ξ0)
be the true parameter vector for a portfolio, and h(θ) the IRB map returning port-
folio RWA. By the central limit theorem (CLT), as the number of obligors in the
portfolio n→ ∞, √

n (θ̂n − θ0) → N (0,Ξ)

with h continuously differentiable at θ0 with gradient ∇h(θ0). Then,
√
n
(
h(θ̂n)− h(θ0)

)
→ N

(
0, ∇h(θ0)⊤Ξ∇h(θ0)

)
.

Proof. ■

Corollary 3.1.1 (Bank-level asymptotic normality). Stack portfolios i = 1, . . . , N
with parameter vectors θ0,i and estimators θ̂n,i satisfying Theorem ?? jointly. Denote
ι the N × 1 vector of ones. Let RWAi = h(θ̂n,i) and RWAbank =

∑N
i=1RWAi :=

µbank. Then, as n→ ∞

√
n

(
µbank −

N∑
i=1

h(θ0,i)

)
→ N

(
0, σ2bank

)
,

where

σ2bank = ι⊤∇H(θ0)
⊤Ξbank∇H(θ0) ι with H(θ0) := (h(θ0,1), . . . , h(θ0,N ))⊤,

and Ξbank is the covariance of the stacked influence vector across portfolios.

Proof. ■
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Theorem ?? is proven naturally via the delta method. The bank-level statement
follows by linearity after stacking portfolios and applying the multivariate delta
method with the joint covariance Ξbank of the stacked influence vector. The vector of
ones sum the marginal (co)variance contributions per portfolio into a scalar variance
for the loan book. The gradient components ∂h/∂PD, ∂h/∂LGD, ∂h/∂EAD admit
closed forms, while correlations among parameter estimators are preserved through
Ξ. Theorem ?? is also shown to hold true numerically in Appendix ??.

3.3 Margin of Conservatism
Although there is no explicit regulatory guidance on how to quantify the MoC for a
given risk parameter, it widely accepted that this represents an upward stress with
respect to the portfolio’s best-estimate RWA.

Definition 3.2 (Stressed portfolio RWA). Let the confidence level for portfolio i
be κi. Given estimates for the mean and variance of Ri, define the stressed RWA, µ̃i
as

µ̃i = µi +Φ−1 (κi)σi. (3)

Definition 3.3 (Portfolio Margin of Conservatism). Define the margin of conser-
vatism (MoC) on the RWA of portfolio i as the relative increase in RWA resulting
from the upward stress given in Equation (??):

βi(κi) =
µ̃i − µi
µi

= Φ−1 (κi)
σi
µi
. (4)

The volatility of the portfolio RWA estimate can be expressed in terms of the best-
estimate RWA, the MoC, and the coverage level of the portfolio,

σi =
1

Φ−1 (κi)
µiβi(κi). (5)

Definition 3.4 (Portfolio Regulatory Capital). The regulatory capital for portfolio
i is defined as a stressed best-estimate,

µ̃i = µi (1 + βi(κi)) . (6)

Consider that the bank wishes that its total regulatory capital has coverage equiv-
alent to the quantile level κbank, aligning with its model risk appetite framework.
A similar definition for the MoC at the total bank-level can thus be defined.

Definition 3.5 (Bank-wide Margin of Conservatism). Using Corollary ??, the
bank-wide MoC is defined as

βbank = Φ−1 (κbank)
σbank
µbank

. (7)

Definition 3.6 (Bank-wide Regulatory Capital). The bank’s total regulatory cap-
ital is defined as a stressed best-estimate,

µ̃bank = µbank (1 + βbank) . (8)
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3.4 Local Linearity of the RWA
Regulation expects the MoC percentage leading to conservative RWAs to be esti-
mated per risk parameter, not on the RWA directly. Hence, while the IRB Basel
formula is linear in LGD and EAD, it is nonlinear in PD, i.e., errors in PD esti-
mates do not propagate linearly through to the estimated RWA. We now state and
show that the estimated RWA is locally linear to first-order for any asset class. For
this we use the general Basel IRB formula for RWA. Numerical verification of the
resulting error bound is provided in Appendix ??.

Theorem 3.2 (Local linearity of RWA in PD). Fix an asset class which is C2,
correlation R(·), and maturity adjustment M(·) on a compact set K = [p, p] ⊂ (0, 1).
Let

RWA(PD) = 12.5× M(PD)LGD
[
Φ(A(PD))− PD

]
× EAD,

where A(PD) = Φ−1(PD)√
1−R(PD)

+
√

R(PD)
1−R(PD) G with G = Φ−1(0.999), and M(PD) is

the IRB maturity adjustment. Then RWA ∈ C2(K) and, for any PD0 ∈ K,

RWA(PD) = RWA(PD0)+RWA′(PD0)(PD−PD0)+
1
2RWA′′(ξ) (PD−PD0)

2,

for some ξ between PD and PD0. In particular, the linearization error is O
(
(PD−

PD0)
2
)

uniformly on K.

Proof. See Appendix ??. ■

Theorem ?? allows us to condense the MoCs estimated per risk parameter into one
multiplicative factor on the best-estimate RWA for portfolio i:

µ̃i = µi(1 + βi,PD(κi))(1 + βi,LGD(κi))(1 + βi,EAD(κi)) ≈ µi(1 + βi(κi)), (9)

where βi,PD is the MoC of the best-estimate PD, and respectively for LGD and
EAD.

3.5 Fair Allocation of Conservatism
Recalling Equation (??), each portfolio receives an upward stress to its estimated
RWA depending on the chosen quantile κi. With no restrictions applied the problem
has infinite solutions. In other words, banks may arbitrarily choose any combination
of quantiles κi that collectively reach κbank allowing for RWA arbitrage. Thus,
from a policy perspective, equal quantiles for all portfolios should be enforced,
κi ≡ κ ∀i. This notion of absolute fairness in allocation of RWA conservatism can
be formalised. First, we define the RWA concentration as the share of the total
bank RWA predicted in portfolio i.

Definition 3.7 (Portfolio concentration of RWA). The concentration of RWA in
portfolio i is defined as:

γi =
µi∑N
j=1 µj

. (10)
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Proposition 3.1 (Absolute fairness of equal quantiles). Let µi > 0 denote the long-
run mean RWA of portfolio i and σi > 0 the standard deviation of its model-error
(or chosen dispersion scale). Define the coefficient of variation mi := σi/µi and
denote the RWA concentration as γi. Define portfolio weights

wi := γimi > 0.

For standardised MoC burdens zi := Φ−1(κi) ≥ 0 and a standardised bank-wide
target Z = Φ−1 (κbank) > 0 for κbank ∈ (0, 1), consider the feasible set

F =
{
z ∈ RN

+ :

N∑
i=1

wizi ≥ Z
}
.

The minimax fairness problem

min
z∈F

max
1≤i≤N

zi

has the unique solution z⋆i = t⋆ for all i, where

t⋆ =
Z∑N

j=1wj

.

Equivalently, the fair allocation in quantile space is κ⋆i = Φ(t⋆) ≡ κ for all i.

Proof. See Appendix ??. ■

Proposition ?? is fundamentally a fairness statement, thus formalising a policy
stance a bank can take. It is not a capital efficiency claim. With wi = γimi and
zi = Φ−1(κi), the max–min problem chooses the allocation that makes the most
stringent standardised requirement as small as possible. In practical terms, this
means that no portfolio is asked to carry a higher standardised MoC threshold
than any other; the unique way to achieve this is to set equal quantiles, κi = κ ∀i.

This result does not imply that alternative allocations would use more (or less)
total capital. Under local linearity of the RWA estimate (Theorem ??), the bank-
wide constraint binds at

∑
iwizi = Z, so any allocation on this boundary has

the same first-order aggregate MoC capital. Proposition ?? therefore governs the
distribution of “conservatism burden” across portfolios instead of the aggregate
amount. Differences in business efficiency arise only from second-order effects such
as regulatory constraints (e.g., floors/caps) or managerial preferences about which
portfolio should bear relatively more conservatism.

3.6 Bank-wide RWA
We now describe the properties of the bank-wide RWA estimate and discuss its
implications. Collect R = (R1, . . . , RN )⊤, µ = (µ1, . . . , µN )⊤, σ = (σ1, . . . , σN )⊤,
γ = (γ1, . . . , γN )⊤, and η = (η1, . . . , ηN )⊤. Let ι denote a vector of ones of con-
formable dimension. Let P = [ρij ] denote the symmetric, positive semidefinite error
correlation matrix such that Σ = diag(σ)P diag(σ). Write β = (β1, . . . , βN )⊤, such
that B := diag(β). Define

Ψ := B⊤PB.
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Where Σ and Ψ differ is that the former represents the unknown covariance ma-
trix for all portfolio RWAs, whereas the latter is a scaled estimate expressed as a
“coefficient of variation matrix”.

Theorem 3.3 (Bank-wide RWA moments and MoC aggregation). Under (??) and
(??),

µbank =
N∑
i=1

µi, σ2bank =
1

(Φ−1(κ))2
µ⊤Ψµ,

and the bank-level MoC aggregates as

βbank =
N∑
i=1

γi βi.

Proof. See Appendix ??. ■

Theorem ?? is an important result. We can estimate the unknown variance of the
bank-wide RWA estimate through a scaled sum of each portfolio’s estimated RWA
variance. The theorem also establishes how the MoC estimated per portfolio con-
tributes to the bank-wide MoC through the proportion of the bank-wide estimated
RWA contained within each portfolio. In the next section, this result will be utilised
to link the bank-wide confidence level, κbank, to the confidence level set for each
portfolio, κ.

4 The Quantile Scaling Factor
The previous section introduced all the variables necessary for the derivation of
the quantile scaling factor (QSF), which we will call q. The RWA estimate and its
corresponding MoC at both portfolio and total bank level were defined along with
their statistical properties. In this section, we combine these results to define the
QSF and investigate its properties. The main results will be presented first with
their interpretations, thereafter followed by examples to showcase how the QSF can
be used in practice.

Definition 4.1 (Quantile Scaling Factor). For two quantiles 0.5 < κ ≤ κbank < 1
of the standard normal distribution Φ, the quantile scaling factor (QSF) is defined
as:

q =
Φ−1(κ)

Φ−1(κbank)
∈ (0, 1], (11)

The QSF is a ratio of two statistical coverage levels. Assuming the target bank
quantile, κbank, is set by the bank’s model risk appetite framework and the bank
has an estimate for its QSF, q̂, the implied portfolio quantile required to attain
κbank is thus given as:

κ̂ = Φ
(
q̂Φ−1(κbank)

)
. (12)

Figure ?? shows how κ varies for different combinations of the QSF and target bank-
wide quantile, κbank. Consider the limiting cases where q̂ → 0 and q̂ → 1. In the
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Figure 1: Implied portfolio quantile, κ, for different combinations
of q̂ and κbank. The target bank-wide quantile varies from 80% to
99.9%, whereas the QSF is in (0, 1).

former, regardless of how risk averse the target bank-wide quantile is, the portfolio
quantile remains low at κ̂ ≈ 0.5. This is verified by inspecting Equation (??). In
other words, the portfolio best-estimate RWA provides full statistical coverage, or
a full diversification of risk. This also implies zero uncertainty in the total bank-
wide RWA; an unrealistic situation. For the latter case Equation (??) becomes
κ → κbank. To reach κbank each portfolio must have an MoC quantified at that
same quantile. This situation corresponds to no model risk diversification. In
essence, the QSF represents the strength of model risk diversification present in the
bank’s loan book.

Theorem 4.1 (QSF). Let κbank ∈ (0, 1) be the bank-level target and denote the
Hadamard product by �. The QSF as given in Definition ?? satisfies

q =

√
(γ � β)⊤P (γ � β)

ι⊤(γ � β)
=

∥∥P1/2(γ � β)
∥∥
2∥∥γ � β

∥∥
1

, (13)

Proof. See Appendix ??. ■

Theorem 4.2 (Bounds and extremal structures). Let a = γ � β ∈ RN
+ and P a

correlation matrix. Then

0 ≤ q ≤ 1,
√
λmin(P)

‖a‖2
‖a‖1

≤ q ≤
√
λmax(P)

‖a‖2
‖a‖1

.

Moreover:

• (Fully systemic model errors) If P = ιι⊤, then q = 1.

• (Fully idiosyncratic model errors) If P = IN , then q = ‖a‖2/‖a‖1.

12



Proof. See Appendix ??. ■

Corollary 4.2.1 (Schur-convexity of q under uniform RWA concentration). Under
P = IN , if γi are also all equal with

∑
i γi = 1, then

γi =
1

N
∀i ⇒ q =

∥∥β∥∥
2∥∥β∥∥
1

with 1√
N

≤ q ≤ 1.

The QSF q is thus Schur-convex and decreases toward 1/
√
N as MoC estimates be-

come more similar. In other words, under the conditions stated above, less dispersed
MoC values across portfolios maximise the bank’s model risk diversification.

Proof. See Appendix ??. ■

Theorem ?? provides the main result of this work. The QSF (??) is a dispersion
ratio: an ℓ2 norm (under P) over an ℓ1 norm of γ�β. It equals 1 when model risk is
fully systemic, while it falls toward 1/

√
N as errors in RWA estimates become more

idiosyncratic and γ equalises. More precisely, under fully idiosyncratic model errors,
uniform RWA concentrations, and equivalent portfolio MoC estimates2, q → 0 as
N → ∞.

The dependence on the portfolio quantile κ through β also drops in Equation (??).
Thus, only information about each portfolio’s RWA concentration and error cor-
relations is required to understand the level of model risk diversification in the
bank’s loan book. From this, with a set model risk appetite, the bank can directly
determine the quantile required per portfolio, κ.

5 Understanding the QSF and its Properties
In this section we provide several simulated examples aimed at better understanding
how the QSF in Equation (??) behaves. We will set and vary three key character-
istics of the bank’s loan book to do this, namely, the number of portfolios, RWA
error correlations, and RWA concentrations. MoC values will be sampled based on
typical values observed in practice following certain basic principles that must be
met. Note that information about neither the bank’s model risk appetite nor the
portfolio RWA distribution is required to conduct these analyses. Thereafter, in
Section ?? we will construct a more realistic loan book that will estimate correla-
tions of RWA errors and feed these into the QSF formula to produce an implied
portfolio quantile usable by the bank.

5.1 MoC Sampling
There are two main conditions that the sampled βi should satisfy to ensure these
represent realistic MoC percentages. They must first be strictly postive, i.e., nonzero
and non-negative. This is also a regulatory expectation: MoCs must represent a
conservative stress on RWA estimates. Secondly, the majority of the density should

2It should also be noted that Schur-convexity of q no longer holds if γ is not uniform. This is due to
the asymmetry of the resulting dispersion in γ � β.
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sit between 1-40%. While excessively high MoCs > 40% are rare, they are still
possible.

To satisfy the first condition, the chosen distribution must have support on R.
Satisfying the the second condition requires a right-skewed and long-tailed distri-
bution, i.e., unbounded above. To retain interpretability of the hyperparameters
the lognormal distribution is chosen,

βi ∼ LogN(ν, τ).

For the analyses in the remaining sections we will set ν = 0.2 and τ = 0.1. It
should be noted that independent samples with the same parameters are drawn for
all portfolios. Hence, on average, β will be equivalent across portfolios, inducing a
minor amount of model risk diversification.

5.2 RWA Error Correlation and Concentration
Consider a bank with N = 2 portfolios. We define two correlation structures
between their RWA errors, ηi,

P0 =

[
1 0
0 1

]
, P1 =

[
1 0.95

0.95 1

]
.

These define the fully idiosyncratic (maximal diversification) and strongly systemic
model errors, respectively. Let the RWA concentration vector vary as

γ =

[
ε

1− ε

]
, ε ∈ (0, 1).

Consider two scenarios. One where RWA concentration is uniform, ε = 0.5, and
the other where RWA is concentrated in portfolio i = 1, ε = 0.95. Taking 1000
MoC samples per β1 and β2 as described earlier and using Equation (??), we get
distributions for q for each combination of scenarios. These are shown in Figure ??.

As expected, fully idiosyncratic model errors lead to a low QSF and vice versa, with
little diversification present for strongly systemic model errors. The diversification
effect is dampened when RWA concentration in a single portfolio is high. To better
understand the effect of concentration, we let ε vary in (0, 1) and take the mean of
the simulated distribution for q, which we will call q̄. The resulting plot is given in
Figure ??.

We make the following observations. The QSF attains its minimum when RWA
concentration is uniform regardless of the error correlation between the two port-
folios, confirming Theorem ??. For strongly systemic RWA errors the QSF stays
close to 1 regardless of the RWA concentration. This is offset when RWA concentra-
tion is high. Finally, the peaked distributions for q when concentration is uniform
suggests that RWA concentration across portfolios has a larger effect on model risk
diversification than the error correlations between them.

5.3 Number of Portfolios
We now turn to the total number of portfolios. For this analysis we will increase N
from 2 until 50, while restricting RWA errors to be fully idiosyncratic and portfolios

14



Figure 2: Simulated distributions for the QSF given four combinations of RWA concentrations and
error correlations.

Figure 3: Effect of RWA error correlation and concentration
on the QSF for a bank with N = 2 portfolios.
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to have uniform RWA concentrations,

P = IN , γ =


1/N
1/N

...
1/N

 .
Sampling βi for i = 1, . . . , N as before and taking the mean of the simulated QSF
distribution, we get the relationship shown in Figure ??. We first note that the
resulting function is exactly equivalent to 1/

√
N , as expected by Corollary ??.

Holding all else fixed and increasing the total number of portfolios leads to a sub-

Figure 4: Effect of the total number of portfolios on the QSF.

stantial model risk diversification effect. The effect on the QSF begins to dissipate
fairly quickly, with the majority of the benefit realised up to N = 10 portfolios.

6 Portfolio Quantile Estimation
We now investigate a realistic scenario and showcase how the above analyses lead
to an implied quantile that is usable by a bank. To illustrate empirical applica-
bility, we apply the QSF framework to a synthetic loan book calibrated to public
regulatory disclosures, designed to mimic a large diversified bank’s RWA profile
while containing no proprietary information. It is given that the bank’s model risk
appetite dictates its bank-wide coverage, κbank, and utilises the result in Equa-
tion (??). We compute the implied portfolio quantile, κ, assuming three levels of
risk appetite: κbank = 85%, 95%, and 99%3.

6.1 Synthetic Loan Book
A synthetic loan book comprising of N = 10 representative portfolios is constructed
with yearly observations from 2014–2024. Portfolio sizes, PD ranges, LGD means

3These percentages are chosen because they are roughly equidistant on R when Φ−1 is applied to
them, representing equally large “jumps” in model risk appetite.
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and EAD distributions are calibrated to publicly available supervisory aggregates
and disclosure templates. Specifically, these are the EBA EU-wide Transparency
Exercise and the ECB’s Supervisory Banking Statistics, which report aggregate
RWA density and sectoral statistics. The Basel risk-weight function is used to
compute true RWAs. Realised defaults per year are drawn via binomial sampling
using the true yearly PDs, realised LGDs are drawn from Beta distributions with
portfolio-specific means and variances, and EADs per obligor are drawn from log-
normal distributions calibrated to produce realistic exposure concentration. An
ASRF model is employed to induce variability in the true PDs, while we will as-
sume LGDs and EADs to be deterministic through time. Specifically, each portfolio
PD has an idiosyncratic credit risk factor and, through different asset correlations,
is also shocked via a systemic macro factor. All details of how the loan book was
generated are provided in Appendix ??.

6.2 Estimating RWAs and Model Error Correlations
To produce estimates of the QSF, create modelled RWA estimates for each portfolio–
year in the loan book. We consider only a PD model while fixing LGDs to the
portfolio mean and EADs to the generated totals. We will assume that modelled
PDs are calibrated to the long-run average default rate (LRA DR) for each portfolio:

P̂Di ≡ LRADRi =
1

T

T∑
t=1

ODRi,t.

We induce model risk variability in the predicted PDs by applying an ASRF model,
whereby each portfolio has a unique systemic model risk factor loading. Each
portfolio’s predicted PD is thus subject to unique idiosyncratic and systemic model
risk volatility. Modelled portfolio PDs are sampled from a Beta distribution with
unique parameters (αi, βi) that match the predicted PD and the pre-specified model
risk factor volatilities and loadings. Beta parameters are first computed as:

αi =

(
1− P̂Di

σ2idiosync
− 1

P̂Di

)
P̂D

2

i , βi =
αi

1

P̂Di
− 1

,

which are then used to produce a sample of the modelled PD via:

P̂D
(k)

i ∼ logit−1
(

logit (Beta(αi, βi)) +
√
c ϕiψ,

)
where ψ ∼ N (0, 1) is the systemic model risk factor with portfolio-specific factor
loadings ϕi and c ∈ R+. The specific values used are found in Table ??, which also
contain the chosen hyperparameters used per portfolio’s MoC sample distribution.
The sets of (ν, τ) are chosen based on what is typically observed in practice and to
allow for unequal MoC distributions.

The final PD samples are then fed into the Basel formula corresponding to the
portfolio’s asset class, using the mean portfolio LGD and total EAD at each year
to simulate predicted RWAs:

R̂
(k)
i,t = 12.5× g

(
P̂D

(k)

i ,M = m

)
× LGDi,t × EADtot

i,t ,
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Portfolio σidiosync ϕi νi τi

Residential mortgages 0.002 0.05 0.07 0.03
Retail unsecured 0.006 0.08 0.15 0.05
SMEs 0.009 0.12 0.12 0.06
Large corporates 0.011 0.01 0.30 0.10
Commercial real estate 0.004 0.04 0.18 0.07
Sovereigns 0.008 0.06 0.32 0.09
Financial institutions 0.024 0.09 0.22 0.08
Auto loans 0.019 0.13 0.11 0.04
Project finance 0.001 0.17 0.26 0.08
Specialty consumer finance 0.017 0.03 0.16 0.04

Table 2: Values for the idiosyncratic model factor volatilities, systemic model factor
loadings, and MoC sample hyperparameters per portfolio.

where the maturity m is set to 1 for retail asset classes and to 2.5 for corporate asset
classes. While the project finance and commercial real estate portfolios technically
fall under specialised lending and thus use supervisory slotting, for the purpose of
this analysis they are treated as corporate asset classes. Asset correlations in the
IRB formula are also retained for each portfolio’s asset class.

The true RWA, Ri,t, is given in the synthetic loan book by using the true, latent
PD series. RWA errors are thus estimated as:

η̂i,t = R̂
(k)
i,t −Ri,t,

from which we can estimate the error correlations, ρ̂ij , at every year. Spearman
rank correlations are used to negate scale issues with large RWA values. An example
heatmap for the year 2024 is provided in Figure ??. It should be noted that these
errors will contain some residual correlations due to the systemic macro shocks. In
reality, it is true that modelled portfolio RWAs will exhibit procyclicality, but as
we assume TTC calibration of risk parameters, model errors are expected to be
dominated by model risk factors. As RWA concentrations in a bank’s loan book is
determined by predicted RWAs, these are estimated at each year, t, by averaging
across all samples, k:

γ̂i,t =
1
K

∑K
k=1 R̂

(k)
i,t∑N

i=1

(
1
K

∑K
k=1 R̂

(k)
i,t

) .
Finally, to compute the QSF at each year, MoC samples are produced following the
method described in Section ??. The estimated QSF in year t is then taken as the
mean of the resulting QSF distribution.

6.3 Results
The above setup is run on the synthetic loan book for K = 1000 modelled PD
samples and J = 1000 MoC samples at each year. The resulting time series for the
estimated QSF, q̂t, is given in Figure ??. The bank may then choose to take the
time-weighted average of the QSF time series to estimate its QSF.
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Figure 5: Estimated RWA error correlations for the synthetic loan book in 2024.

Figure 6: Estimated QSF time series with a long-run average and a 95%
confidence band for the synthetic loan book.
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A robustness analysis is conducted by scaling the systemic model factor loadings by
the value c and computing standard errors on the resulting implied portfolio quan-
tiles, κ, given three model risk appetites. Standard errors on κ̂ are approximated
by an application of the delta method to Equation (??):

sκ̂|κbank ≈
∣∣∣∣∂κ̂∂q̂

∣∣∣∣ sq̂ = Φ(κbank) ϕ (q̂Φ(κbank)) sq̂.

The results are shown in Table ?? and Figure ??. The sensitivity of the estimated
κ̂ to scaling of the systemic model risk factor loadings is shown in Figure ??.

Figure 7: Estimated QSF for scaled model risk factor loadings (left); and implied portfolio quantile
for three model risk appetites (right). Standard errors use for the 95% confidence bands around κ
are estimated by applying the delta method to Equation (??).

Figure 8: Estimated portfolio quantiles for different scalings of
the model systemic risk factor loadings. Fully systemic model
errors (dashed) shown for comparison.

As expected, model risk diversification is present, lowering the necessary confidence
level per portfolio. Portfolios with higher systemic model risk asset correlations
predictably have higher RWA error correlations, but its effect is offset by lower
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RWA concentrations. The QSF is generally robust to the systemic model risk factor
loadings, and its dependence on systemic errors in model estimates diminishes the
more averse the bank’s model risk appetite.

κ

c q̂ Qbank(0.85) Qbank(0.95) Qbank(0.99)

0.25 0.645 0.748 0.855 0.933
0.50 0.667 0.755 0.864 0.940
1.00 0.696 0.765 0.874 0.947
2.00 0.727 0.774 0.884 0.955
4.00 0.757 0.778 0.893 0.961

Table 3: Implied portfolio quantiles necessary to reach the bank-wide con-
fidence level corresponding to three model risk appetites, Qbank.

7 Discussion
The previous sections proposed the QSF, investigated its properties, and showcased
a simulated example of how it can be applied in practice. We now discuss the im-
plications of the results, provide practical guidance on how to apply the framework,
and highlight current gaps for future research.

The results of the previous sections show how correlated RWA estimation errors,
RWA concentration, and total number of portfolios in the loan book contribute
to the level of model risk diversification. The level of diversification determines
the appropriate statistical coverage necessary per portfolio for a bank’s model risk
appetite strategy to be met. While the aforementioned are the key identified drivers,
they effectively boil down to one single characteristic: the primary source of model
uncertainty faced by the bank. More specifically, how much RWA mis-estimation
across models is driven by systemic error sources as opposed to idiosyncratic.

Recalling Theorem ??, should model errors be fully driven by a known systemic
bias, then no diversification is present and portfolio MoC quantification should
match the bank-wide model risk appetite strategy, κ = κbank. This is an unrealistic
scenario. Every portfolio will have its own sources of uncertainty that are unique.
In fact, it is more reasonable to assert that the majority of RWA estimation error
will stem from a collection of idiosyncratic factors rather than a single systemic
factor that permeates the entire loan book. This is more likely the larger and more
global the bank is. On the other hand, portfolios in smaller banks that operate in
local markets and/or on centralised data systems are more likely to be exposed to
pertinent systemic model errors. Regardless, the QSF framework is applicable to
all banks that produce statistical estimates of its portfolio RWAs.

The first step to determining the appropriate MoC confidence level is a model
risk appetite strategy that defines a target bank-wide confidence level. Estimates
of γ can be taken as the historical proportion of the RWA in each portfolio on
non-overlapping observation windows. MoCs can be sampled using the method
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described in Section ??, where the hyperparameters ν and τ can be chosen based
on the bank’s own historical MoC estimates for its PD, LGD and EAD models. As
regulatory MoCs are computed per risk parameter, an appropriate estimate for the
portfolio MoC, βi, is thus approximated via Equation (??). Should a more informed
choice be desired, an empirical distribution of quantified portfolio MoCs provide
information about the location and spread of these historically. If this information
is not available, either the values used in this work or expert opinion from model
owners and developers can set ν and τ . Preliminary analyses of the sensitivity of
the QSF to these hyperparameters indicate that the QSF is not dependent on ν,
but there is a linear dependence on τ . Specifically, higher values for τ will result
in a more conservative portfolio quantile κ. This is expected when considering the
strict Schur-convexity of the QSF under certain idealised conditions: all else fixed,
a higher dispersion in MoCs will increase q.

What remains is how to estimate the error correlations between estimated portfolio
RWAs. Under the ASRF framework developed here for estimated portfolio RWAs,
it is argued that, by virtue of overall bank size, idiosyncratic model risks likely
dominate RWA estimate errors. Model errors due to missing regressor values, mod-
elling choices, loan policy changes, or changes in the composition of the portfolio
through time are all examples of commonly known idiosyncratic model risks. The
framework developed in this paper implies that large banks with many portfolios
globally are justifiably in a position to set P = IN . In reality, systemic model
risks are present even in large banks, albeit to a much lesser degree. For example,
ambiguity as to which portfolio a specific borrower belongs is not uncommon for
large corporate portfolios. This uncertainty in the scope of RWA application is an
example of a systemic source of model risk that results in dependent RWA biases.
Should a bank wish to assume dominant idiosyncratic model errors, it must then be
shown that variability in RWA estimates from identified sources of systemic model
errors are negligible.

For banks wishing to err on the side prudence, accurately estimating each portfolio’s
systemic model risk factor loading ϕi presents a challenge. However, given the
results in Figures ?? and ??, one may conclude that accurate estimation is not
necessary, and setting a fixed value for each portfolio based on qualitative arguments
is sufficiently prudent. If this is not adequate for the bank’s risk management,
directly estimating ϕi may be bypassed by estimating ρij instead, but this is again
not immediately straightforward. Models that estimate RWA are not frequently
developed, and each time a bank creates only one realisation of quantified model
errors. The bank may choose to adopt the method described in Section ?? and
extend it to their LGD and EAD models using beta and lognormal distributions,
respectively, should such portfolios receive internal estimates. The bank’s QSF
is by definition insensitive to the volatility of the idiosyncratic model risk factor
per portfolio, so this can be chosen qualitatively based on expert model opinion.
Generating model error distributions then requires simulating from existing models
and subtracting the true historical RWAs implied by historically observed defaults,
economic losses/write-offs, and total exposures. Spearman rank correlations may
then be estimated to avoid any bias due to portfolio size. This is neither the only nor
the best approach, but it is a tractable and sound solution, with other possibilities
left to future research.
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Lastly, we briefly discuss the level at which risk parameters are calibrated and how
this impacts the applicability of the methods described in this work. Regulation
allows for the calibration of risk parameters at more granular levels than portfolio
or segment. Specifically, these may be at rating grade level for PD or pool level for
LGD and EAD, which then also extends to the level at which MoCs are quantified.
Since these more granular levels are independently calibrated with their own MoCs,
a similar diversification argument holds. Stressed grade or pool level estimates
aggregate to a higher coverage level at the portfolio or segment level. As such, grade
or pool level calibrations may require even lower quantiles than the estimated κ to
ensure κbank is attained. In practice, instead of optimising for this quantile, it is
advised to simply set the quantile for more granular MoC quantifications to a fixed
value κ̃ ≤ κ. Once the final parameters are estimated, the actual quantile attained
at the portfolio or segment level can be checked to ensure at least κ is reached. This
can be done via an application of the central limit theorem (CLT) to the portfolio
or segment level long-run average PD, LGD or EAD. A number-weighted average
of stressed grade/pool level risk parameters gives the stressed risk parameter at the
portfolio level. Using the CLT, one can check the quantile the stressed value reach
with respect to the implied distribution of the risk parameter at this level.

8 Conclusion
In this paper we introduced the QSF, a simple formula usable by credit risk man-
agers to set an appropriate, non-trivial confidence level for portfolio MoCs. Specif-
ically, the QSF links a bank-wide confidence level set by the bank’s risk appetite
framework to the confidence level required per portfolio’s estimated RWA. The QSF
itself is a ratio of volatilities: the total bank-wide RWA volatility with respect to the
sum of the marginal RWA volatilities per individual portfolio. We investigated the
characteristics of a bank’s loan book that influence the required statistical coverage
per portfolio’s estimated RWA to satisfy the bank’s model risk appetite. These
are, namely, RWA error correlations, RWA concentration, and the total number of
portfolios in the loan book. For a given model risk appetite, more uniform RWA
concentrations and/or primarily idiosyncratic model errors result in a high degree of
model risk diversification, allowing for a narrower MoC confidence level per portfo-
lio. High RWA concentration in one or more portfolios and/or a dominant systemic
model error weakens this diversification effect. This is expected, since the volatility
of the total bank RWA will be mostly driven by either a single portfolio or the
systemic model bias. Additionally, the more portfolios in the bank’s loan book, the
stronger the model risk diversification. The QSF was estimated on a synthetically
generated loan book using real-world aggregate statistics published by supervisory
authorities, and the implied portfolio quantiles estimated. In the discussion sec-
tion we provide practical guidance on how to implement the QSF framework for
any bank wishing to enhance its model risk management framework. It should
be noted, however, that doing so might lead to questions by regulators, who of-
ten apply benchmark conservatism values to banks under their supervision. This
notwithstanding, the work in this research shows that no benchmark is universally
applicable. Loan book characteristics that influence a bank’s QSF are all unique,
as no two banks experience the exact same model risks.
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A Proofs
A.1 Proof of Theorem ??
Proof. All building blocks (Φ, ϕ,Φ−1, algebra, square-roots, R(·),M(·)) are C2 on
K = [p, p] with p > 0. Hence RWA ∈ C2(K). Now, compute the first two
derivatives of RWA with respect to PD. Let z(PD) = Φ−1(PD), hence we have
that

z′ =
1

ϕ(z)
, z′′ =

z

ϕ(z)2
.

Write r = R(PD), r′ = R′(PD), r′′ = R′′(PD), and

A(PD) =
z√
1− r

+G

√
r

1− r
, G = Φ−1(0.999).

Then

A′ =
z′√
1− r

+
z r′

2(1− r)3/2
+

Gr′

2(1− r)3/2
√
r
, A′′ exists and is continuous on K.

For the maturity adjustment with b(PD) = (a− c lnPD)2 and M(PD) = 1+αb
1−1.5b ,

b′ = −2c(a− c lnPD)

PD
, b′′ =

2c(a+ c− c lnPD)

PD2

M ′ =
(α+ 1.5) b′

(1− 1.5b)2
, M ′′ = (α+ 1.5)

[ b′′

(1− 1.5b)2
+

3(b′)2

(1− 1.5b)3

]
.

Define K(PD) = LGD [Φ(A)− PD]. Then

K ′ = LGD
[
ϕ(A)A′ − 1

]
, K ′′ = LGDϕ(A)

[
A′′ −A(A′)2

]
.

Finally, with Y = 12.5EAD,

RWA′ = Y {M ′K +MK ′}, RWA′′ = Y {M ′′K + 2M ′K ′ +MK ′′}.

Taylor’s theorem with a Lagrange remainder yields

RWA(PD) = RWA(PD0)+RWA′(PD0)(PD−PD0)+
1
2RWA′′(ξ)(PD−PD0)

2

for some ξ between PD and PD0. Continuity on compact K implies LK :=
supp∈K ‖RWA′′(p)‖ <∞, giving a uniform quadratic error bound. ■

A.2 Proof of Proposition ??
Proof. Let t⋆ := Z/

∑N
j=1wj and z⋆ := (t⋆, . . . , t⋆). Then

∑
iwiz

⋆
i = t⋆

∑
iwi = Z,

so z⋆ is feasible, and its maximum coordinate equals t⋆. For any other feasible z, we
have the elementary bound

∑
iwizi ≤ (maxi zi)

∑
iwi. Because feasibility requires∑

iwizi ≥ Z, this bound implies maxi zi ≥ Z/
∑

iwi = t⋆. Hence no feasible vector
can achieve a strictly smaller maximum coordinate than z⋆.

To see uniqueness, suppose z is feasible with maxi zi = t⋆ but some component
satisfies zk < t⋆. Then∑

i

wizi ≤ t⋆
∑
i

wi − (t⋆ − zk)wk < t⋆
∑
i

wi = Z,
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contradicting feasibility. Equivalently, if one component were below t⋆, some other
would have to exceed t⋆ to meet the bank-wide constraint, raising the maximum
above t⋆. Therefore all components must equal t⋆, which proves that the unique
minimax-fair allocation is zi = t⋆ for all i, i.e., κi = Φ(t⋆). ■

A.3 Proof of Theorem ??
Proof. By linearity,

µbank := E
[
R⊤ι

]
=

N∑
i=1

µi.

With Σ = diag(σ)P diag(σ) and ι the vector of ones,

σ2bank := V[R⊤ι] = ι⊤Σ ι.

Substitute σi = µi βi/Φ
−1(κ) from (??):

Σ =
1

(Φ−1(κ))2
diag(µ)B⊤PB diag(µ),

whence
σ2bank =

1

(Φ−1(κ))2
µ⊤B⊤PBµ =

1

(Φ−1(κ))2
µ⊤Ψµ.

Finally, by definition βbank =
∑N

i=1 γiβi. ■

A.4 Proof of Theorem ??
Proof. Let mi := σi/µi and mbank := σbank/µbank be coefficients of variation.
Equating the aggregated bank MoC to the bank-wide MoC at their respective quan-
tiles gives

Φ−1(κ)
∑
i

γimi = Φ−1(κbank)mbank,

Using Theorem ??, Equation (??), and γi = µi/µbank yields

q =
Φ−1(κ)

Φ−1(κbank)
=

√
(γ � β)⊤P (γ � β)

ι⊤(γ � β)
.

The ℓ2/ℓ1 form is immediate by setting a = γ�β and writing a⊤Pa = ‖P1/2a‖22. ■

A.5 Proof of Theorem ??
Proof. For any a ≥ 0, a⊤Pa ≤

∑
i,j aiaj = (

∑
i ai)

2, since all off-diagonal cor-
relations ρij ≤ 1 and diagonal terms equal 1. Hence q ≤ 1. Nonnegativity is
immediate. The eigenvalue bounds follow from the Rayleigh quotient: λmin‖a‖22 ≤
a⊤Pa ≤ λmax‖a‖22, yielding the stated inequalities upon division by ‖a‖1. Extremal
structures are direct checks. ■
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A.6 Proof of Corollary ??
Proof. Fix N ≥ 2 and let γ = ( 1

N , . . . ,
1
N ) ∈ RN . For β ∈ RN

+ \ {0} we have that
q(β) = ‖β‖2/‖β‖1. For any s > 0, let

Ss := {β ∈ RN
+ : ‖β‖1 = s}.

We will thus show that the restriction of q to Ss is strictly Schur-convex. In other
words, if β, β′ ∈ Ss and β � β′ (in the sense of majorisation), then q(β) ≥ q(β′),
with equality if and only if β is a permutation of β′.

The function q is homogeneous of degree 0, i.e. q(cβ) = q(β) for all c > 0. Hence it
suffices to work on the simplex

∆ :=
{
p ∈ RN

+ :
N∑
i=1

pi = 1
}
,

by setting p = β/‖β‖1. On ∆, q(β) = ‖p‖2 =
√∑N

i=1 p
2
i . Thus it is enough to show

that p 7→
∑

i p
2
i is strictly Schur-convex on ∆.

Consider ϕ(p) :=
∑N

i=1 p
2
i . This function is symmetric and continuously differen-

tiable. The Schur–Ostrowski criterion states that a C1 symmetric function f is
Schur-convex if (xi − xj)

(
∂f/∂xi − ∂f/∂xj

)
≥ 0 for all x and all i, j. Here

∂ϕ

∂pi
(p) = 2pi =⇒ (pi − pj)

( ∂ϕ
∂pi

− ∂ϕ

∂pj

)
= 2(pi − pj)

2 ≥ 0.

Hence ϕ is Schur-convex on RN
+ , and in particular on ∆. Moreover, since t 7→ t2 is

strictly convex, ϕ is strictly Schur-convex on ∆: if p � p′ and p is not a permutation
of p′, then ϕ(p) > ϕ(p′).

Take h(u) =
√
u strictly increasing on [0,∞). Therefore h ◦ ϕ is (strictly) Schur-

convex wherever ϕ is. In particular,

p � p′ =⇒ ‖p‖2 =
√
ϕ(p) ≥

√
ϕ(p′) = ‖p′‖2,

with strict inequality unless p is a permutation of p′. Hence, if β, β′ ∈ Ss, then
p = β/s and p′ = β′/s lie in ∆ and satisfy p � p′ whenever β � β′. Thus

q(β) =
‖β‖2
s

= ‖p‖2 ≥ ‖p′‖2 =
‖β′‖2
s

= q(β′),

with equality if and only if β and β′ differ by a permutation. This proves the claim.
Upper and lower bounds on q are straightforward to show (‖β‖2 ≤ ‖β‖1 for the
upper bound and an application of Cauchy-Schwarz for the lower bound). ■

B Numerical Asymptotic Portfolio RWA Dis-
tribution
To describe the asymptotic distribution of a portfolio’s RWA, a bootstrap is run on
a portfolio containing k = 1, . . . , 10000 loans. For simplicity we consider the loss
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distribution of each individual loan to follow a lognormal, but the result does not
change when using a Vasicek loss distribution. Each loan’s loss is sampled via

l(k) ∼ Lognormal
(
µ(k), σ(k)

)
,

where the mean and standard deviation are sampled uniformly,

µ(k) ∼ U(−60, 10), σ(k) ∼ U(0.01, 0.50).

This bounds the mean of the loan loss, eµ(k) , below by 0 and above by a value with
order of magnitude 108. The errors on this mean are sampled to reflect typical MoC
values between 1-50%. The RWA for the portfolio is then taken to be the difference
between the 99.9th percentile and the mean of this loss distribution.

The portfolio loss distribution is bootstrapped 1000 times and the RWA re-computed
to produce a distribution for the RWA, given a lognormal loss distribution with
varying means and variances for each loan. The resulting RWA distribution is pro-
vided in Figure ?? below. It is clear that the RWA indeed converges to a normal
distribution.

Figure 9: Bootstrapped RWA distribution given Monte
Carlo simulated portfolio loss distributions.

C Numerical Diagnostics for Local Linearity
of RWA in PD
This appendix quantifies and visualizes the local linearity of the IRB RWA function
in PD across common asset classes. For each class we evaluate the curvature

LK = sup
p∈K

∣∣RWA′′(p)
∣∣

over a realistic PD range K, and then compare the empirical first-order linearization
error to the quadratic bound 1

2LK∆2 implied by Taylor’s theorem. Across all asset
classes and PD ranges considered, the observed linearization error is dominated
by the quadratic bound, and the ratio |error|/∆2 stabilizes for small ∆. This
empirically corroborates Theorem ??: the remainder is indeed second-order small,
validating local linearity as a working approximation for MoC aggregation.
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Figure ?? shows the magnitude of the second derivative across PD on a logarithmic
scale, highlighting curvature at very low PDs. The subsequent figures report, for
each asset class, (i) the absolute linearization error versus the quadratic bound, and
(ii) the second-order scaling ratio |error|/∆2 around a representative PD0 within
the asset-class range. Parameter settings follow the main text (LGD/EAD typical
values; corporate maturity 2.5 years).

Figure 10: Curvature diagnostic. Magnitude of the second
derivative |RWA′′(PD)| across PD. The supremum over each asset-
class PD range is LK = supp∈K |RWA′′(p)|.
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Figure 11: Linearization error vs. quadratic bound
for Corporate at PD0 = 0.010. The empirical lineariza-
tion error (solid) is dominated by the quadratic bound
1
2LK∆2 (dashed), confirming the second-order remainder.

Figure 12: Second-order scaling check for Corporate
at PD0 = 0.010. The ratio |error|/∆2 stabilizes for small
∆, consistent with a quadratic remainder.
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Figure 13: Linearization error vs. quadratic bound
for Mortgage (Retail) at PD0 = 0.010. The empirical
linearization error (solid) is dominated by the quadratic
bound 1

2LK∆2 (dashed), confirming the second-order re-
mainder.

Figure 14: Second-order scaling check for Mortgage
(Retail) at PD0 = 0.010. The ratio |error|/∆2 stabilizes
for small ∆, consistent with a quadratic remainder.
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Figure 15: Linearization error vs. quadratic bound
for QRRE at PD0 = 0.080. The empirical linearization
error (solid) is dominated by the quadratic bound 1

2LK∆2

(dashed), confirming the second-order remainder.

Figure 16: Second-order scaling check for QRRE at
PD0 = 0.080. The ratio |error|/∆2 stabilizes for small ∆,
consistent with a quadratic remainder.
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Figure 17: Linearization error vs. quadratic bound
for Other Retail at PD0 = 0.050. The empirical lineariza-
tion error (solid) is dominated by the quadratic bound
1
2LK∆2 (dashed), confirming the second-order remainder.

Figure 18: Second-order scaling check for Other Re-
tail at PD0 = 0.050. The ratio |error|/∆2 stabilizes for
small ∆, consistent with a quadratic remainder.
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D Synthetic Loan Book Generation
To enable empirical analysis of the QSF without relying on proprietary bank-level
IRB data, we construct a synthetic loan book dataset that replicates the statis-
tical properties of real-world bank portfolios. To do this, the EBA transparency
dataset and ECB supervisory statistics were used to calibrate aggregate scale and
concentration parameters. The design ensures that the data are realistic enough
for meaningful methodological testing, fully reproducible, and free of confidential
supervisory information.

Loan book structure. We define 10 representative IRB asset-class portfolios:

Identifier Portfolio Type

P1 Residential mortgages
P2 Retail unsecured
P3 SMEs
P4 Large corporates
P5 Commercial real estate
P6 Sovereigns
P7 Financial institutions
P8 Auto loans
P9 Project finance
P10 Specialty consumer finance

Each portfolio is observed annually for the period 2014–2024. Borrower counts are
fixed per portfolio–year within a range reflecting sector size in EBA transparency
datasets: large retail portfolios have tens of thousands of borrowers, while low-
default wholesale or sovereign portfolios have fewer than 1,000. Specific details can
be found in Table ??.

Credit risk parameter calibration. Three risk parameters are assigned to
each portfolio:

1. Probability of Default (PD). Baseline mean PDs range from 0.02% (sovereigns)
to 2% (specialty consumer finance), calibrated to EBA Transparency Exercise
aggregates. Yearly PDs are generated via:

PDi,t = min
{
1, max

[
0.0001, PDtrue

i e
√
1−ρiεi,t+

√
ρiλi,t

]}
where:

• PDtrue
i = portfolio baseline PD;

• ρi = asset correlation of portfolio i to the systemic macro factor;

• λi,t ∼ N (0, σ2macro) is the systemic macro shock;

• εi,t ∼ N (0, 0.2× PDtrue
i ) is idiosyncratic portfolio-specific noise.
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This induces realistic cross-sectional correlation of default rates across port-
folios. The true PD time series can be seen in Figure ??.

2. Loss Given Default (LGD). Mean LGDs range from 20% (prime residential
mortgages) to 60% (project finance), consistent with public EBA LGD data.
Annual realised LGDs are drawn from a Beta distribution with parameters
(αLGD, βLGD) set to match the mean and a variance of 0.02. If no defaults
occur in a given year–portfolio, the realised LGD is set to the mean.

3. Exposure at Default (EAD). Mean EAD per obligor varies from EUR 10,000
(specialty consumer finance) to EUR 2,000,000 (interbank exposures). EADs
are drawn from a lognormal distribution with mean equal to the target av-
erage EAD and volatility parameter σ = 0.5 to introduce skew. Total EAD
for each portfolio–year equals the average EAD multiplied by the number of
borrowers.

Sampling defaults. Defaults are sampled from a binomial distribution for each
portfolio–year, using a varying number of borrowers and the true PD:

Di,t ∼ Binomial (Ni,t, PDi,t) .

An example of the observed default rate (ODR) and corresponding long-run average
default rate (LRA DR) for the synthetic residential mortgages portfolio can be seen
in Figure ??.

RWA calculation. The true risk-weighted assets are computed using the Basel
IRB formula corresponding to the portfolio asset class:

1. Asset correlation ρ follows the BCBS-prescribed PD-dependent formula for
corporate exposures.

2. The Vasicek one-factor model is applied to compute unexpected loss at the
99.9th percentile.

3. RWA is calculated as:

RWA = 12.5× Capital Requirement × EAD

with LGD fixed at the portfolio mean and the total EAD per portfolio for the
capital calculation.
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Figure 19: True, latent probability of default time series for the
synthetic loan book.

Figure 20: Generated ODR and LRA DR for the synthetic residen-
tial mortgages portfolio.
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