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Abstract

The COVID-19 pandemic created abnormal credit risk conditions
that did not align well with pre-2020 credit scores. Since the pandemic,
most organizations have either excluded the period 2020-2021 from
their modeling or included it without adjustment, leaving it as noise
in the data. Model validators and examiners have been divided about
requiring one of these approaches or defaulting to model developer
judgment. None of this is ideal from a model development perspective.

We have found that a technical solution is available. Our analysis
uses lifecycle and environment outputs from an Age-Period-Cohort
analysis as fixed offsets to the credit score development. Panel data
is used, so the credit score is developed with a discrete time survival
model approach. We tested logistic regression and stochastic gradient
boosted regression trees as estimators with the panel data and APC
inputs.

For this research, we used Fannie Mae data. The APC model
was estimated on the full available history, from 2005 through 2024.
The origination scores were estimated on two-year periods from 2016
through 2024 and tested on all other periods, including a score that
was developed on the full period. All models were also tested on
comparably prepared data from Freddie Mac for cross-validation.
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1 Introduction

The COVID-19 pandemic created unprecedented economic conditions that
fundamentally disrupted traditional credit risk assessment. According to
research on marketplace lending, the probability of loan default increased
from 0.056 in the pre-pandemic period to 0.079 during the pandemic. This
significant shift occurred despite massive government intervention programs
designed to stabilize the economy [6].

These intervention programs, while beneficial for short-term economic
stability, created additional challenges for credit risk assessment. A study
by [3] found that default intensities shifted from long-range to short-range
dependence during the COVID-19 period, making historical credit perfor-
mance much less relevant for credit prediction. This phenomenon contrasts
sharply with previous financial crises, where long-memory patterns remained
relatively stable. The current research appears to present a solution to this
challenge.

Financial institutions faced significant challenges in implementing credit
risk models during this period. The disconnect between economic condi-
tions and credit performance led many institutions to replace advanced credit
scores with simple bureau score-based decision trees.

Traditional credit scoring models faced particular challenges during the
pandemic for several reasons. The rapid implementation of forbearance pro-
grams artificially suppressed delinquencies, creating a disconnect between
observed credit performance and actual credit risk. Consumer spending
patterns changed dramatically as lockdowns limited discretionary spending
opportunities, leading to decreased credit utilization and paradoxically im-
proved credit scores during a period of economic distress. This created what
Breeden [8] termed “Macroeconomic Adverse Selection”, where the macroe-
conomic environment significantly influenced the distribution of consumers
applying for loans in ways not reflected in their credit scores. The impact
of the pandemic was heterogeneous across different segments of borrowers,
with certain industries and geographic regions experiencing more severe ef-
fects [30].

A fundamental limitation of traditional credit scoring approaches is their
reliance on cross-sectional data rather than panel data. Cross-sectional mod-
els provide only a snapshot at a single point in time, failing to capture the
dynamic nature of credit risk as it changes through a loan’s lifecycle and
across different economic environments.
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Panel data approaches, which track the same borrowers over multiple time
periods, offer several advantages for credit risk modeling [36]. By knowing
when a loan defaults, the model can be designed to distinguish between
defaults that occur due to the maturing of the loan, shifts in the economic
environment, or the intrinsic credit risk of the loan. During economic shocks
like the pandemic, these advantages become even more critical as they allow
models to adapt to changing conditions and capture time-varying effects that
cross-sectional approaches cannot address.

This paper introduces a method to normalize pandemic data for use in
credit scoring. The lifecycle and environment functions from an Age-Period-
Cohort (APC) model are used to normalize panel-structured performance
data. With this normalization, logistic regression and stochastic gradient
boosted trees are created on Fannie Mae and Freddie Mac mortgage data
to create origination scores that maintain predictive power despite the pan-
demic’s unprecedented conditions.

2 Model Architecture

Many lending analysts have tried to create macroeconomic indices to measure
the actual impact of the pandemic on consumers [16, 21, 20, 29]. The author
tried creating an index of “persons receiving income”, which would include
employed people and those receiving government support. Although this
and other indices made sense, none could capture the impacts of the various
forbearance programs and benefits. Rather than a macroeconomic-based
approach to normalization, the most effective method was to measure the net
impact via age-period cohort modeling and then adjust the score estimation
to use the observed environmental impacts for normalization.

2.1 Fundamentals of APC Modeling

Age-Period-Cohort (APC) analysis provides an effective framework for mod-
eling default risk over time [38, 26]. Originally developed in epidemiology
and sociology [28], APC models have been used in loss forecasting and stress
testing [7]. These models decompose credit performance into three funda-
mental components: lifecycle effects versus age of the account, environmental
impacts versus calendar date, and credit quality by vintage.
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The basic APC model can be expressed as

log-oddsPD(a, t, v) = F (a) +G(v) +H(t) (1)

PD is defined in this context as Ever 60+ DPD Rate, meaning a ”default”
is recorded on the first occurrence of an account becoming 60 or more days
past due. a is the age of the loan, t is the calendar time, v is the vintage
date, F (a) represents the lifecycle function, H(t) represents the environment
function, and G(v) represents the vintage quality function.

This decomposition allows researchers to separate the effects of vintage
quality from loan aging and macroeconomic conditions. During economic
shocks like the COVID-19 pandemic, the environment function captures the
impact of changing consumer financial conditions, while the vintage function
reflects changes in borrower quality. The ability to measure actual impacts
via H(t), rather than trying to explain calendar date impacts purely from
macroeconomic factors, was a key to success during the pandemic.

One challenge in APC modeling is the identification problem arising from
the linear relationship a = t−v [27]. Various approaches have been proposed
to address this issue, including imposing constraints on the functions. In
credit risk applications, a common approach is to represent the model as

log(PD(a, t, v)) = b0 + b1a+ b2v + F ′(a) +G′(v) +H ′(t) (2)

where F ′(a), G′(v), and H ′(t) are nonlinear functions with zero mean and
no linear component. This formulation resolves the linear trend ambiguity.
The analyst must then decide how best to allocate the trend, considering the
details of the problem. For the analysis here, the environment function is
chosen to have zero trend, which is most appropriate with long time histories
spanning more than one recession. If less than one economic cycle had been
available, fitting to economic factors while allowing for a secular trend can
resolve the environmental trend uncertainty.

The functions are estimated using a Bayesian Age-Period-Cohort algo-
rithm [32], in order to constrain the estimates for recent vintages and older
dates where few observations are available.

2.2 Panel Logistic Regression with APC Inputs

Many credit scoring techniques exist which leverage survival modeling prin-
ciples [22, 34, 33, 5]. The most common of these is Cox proportional hazards
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[18, 35, 31], which is widely used, but suffers from instability in a credit
scoring applications [11].

To implement discrete time survival models with APC inputs, we use
panel logistic regression with an augmented model matrix [14]. One row is
created per account per month active, and no more than one entry for a
default event. Censoring the data after default means implicitly that the de-
nominator for PD will be the previous month’s open accounts. This structure
allows the analyst to include a parallel model of the probability of prepay-
ment in order to consider competing risks.

The model matrix becomes

Xi =


0 F (1) H(t1) si1 si2 · · · sik
0 F (2) H(t2) si1 si2 · · · sik
...

...
...

...
...

. . .
...

1 F (ai) H(ti) si1 si2 · · · sik

 (3)

where the first column is the default indicator, the second column is the life-
cycle at each age, the third column is the environment function at each time,
and the remaining columns are scoring covariates. During model estimation,
the coefficients for the lifecycle and environment columns are fixed at 1.0.

By including the APC lifecycle and environment functions as fixed inputs,
the panel logistic regression model can be expressed as:

log

(
PD(a, v, t, i)

1− PD(a, v, t, i)

)
= F (a) +H(t) +

∑
j

cjsij +
∑
v

βvδ(v) + ε(a, v, t, i)

(4)
where sij are the available attributes at origination for account i, and the cj
are the coefficients to be estimated. This approach allows F (a) + H(t) to
specify the mean of the distribution at each forecast month, with the logistic
regression model estimating the distribution of account risk centered about
that mean. In other words, the credit score models the residual risk after
adjusting for lifecycle and environment, thus normalizing the performance
data for account age and the pandemic conditions.

This approach significantly improves out-of-time performance compared
to traditional credit scoring methods [14]. By providing lifecycle and envi-
ronment functions as fixed inputs to the model, we can achieve more stable
coefficients for risk factors and better capture the impact of changing eco-
nomic conditions.

5



2.3 Stochastic Gradient Boosted Trees

Machine learning methods, particularly gradient boosted trees, have gained
popularity in credit scoring due to their ability to capture complex, non-
linear relationships in data. Stochastic Gradient Boosted Regression Trees
(SGBT) combines bagging with gradient boosting to create an ensemble of
ensembles of trees [19, 25].

The basic idea of gradient boosting is to build subsequent models on the
residuals of previous models, computing the gradient of a fitness function to
provide weights to each model trained. Stochastic gradient boosting adds
randomization to this process, building different gradient boosted ensembles
for each data subsample.

FK(x) = c+
K∑
k=1

νhk(x) (5)

where each hk(x) is a model and ν is a learning rate parameter. This approach
can significantly reduce computation times while maintaining acceptable ac-
curacy.

When regression models are used for the hk(x), then lifecycle and envi-
ronment may be included as fixed offsets, just as was done for the discrete
time survival model [14]. The input data is again structured as a panel,
so the resulting forecasts are monthly, conditional PD. Other researchers
have developed combinations of survival modeling and stochastic gradient
boosted trees [17, 4, 37, 1, 2], although for the current problem, we prefer
the APC approach of incorporating an empirical environment function for
normalization of the creditt score development.

3 Fannie Mae and Freddie Mac Data for Orig-

ination Scores

To demonstrate the approach, loan-level data from Fannie Mae and Freddie
Mac were analyzed. The Freddie Mac Single Family Loan-Level Dataset
covers approximately 53.8 million mortgages originated between January
1, 1999, and June 30, 2024, with monthly loan performance data through
September 30, 2024 [24]. Comparable data from the Fannie Mae Single-
Family Loan Performance Data was prepared for modeling [23]:
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For our analysis, we focus on loans with FICO scores between 660 and 780,
following the approach described in the search results. This creates a dataset
with 622,452 unique loans of which 4,346 defaulted for a lifetime default rate
of 0.7%. The data includes vintages from January 1999 through November
2019, with performance data from January 2017 through December 2019.

The origination scoring variables available from both Fannie Mae and
Freddie Mac are given in Table 1.

Table 1: Variables for credit scoring

Variable Name

Borrower Credit Score At Origination
Loan Purpose
Number Of Borrowers
Original Combined Loan To Value Ratio (CLTV)
Original Debt To Income Ratio (DTI)
Original Interest Rate
Property Type

This set of variables is sufficient to demonstrate the approach, but not
to highlight the nonlinear modeling capabilities of the stochastic gradient
boosted regression trees.

To prepare the data for our panel modeling approach, we create an aug-
mented data matrix where each loan has multiple observations corresponding
to different points in its lifecycle. For each observation, we include both static
variables (such as bureau credit score and LTV at origination) and the values
of the APC functions.

4 Results

4.1 Age-Period-Cohort Model

For the APC analysis, the full Fannie Mae data was analyzed. This was
necessary in order to estimate the environment function over the full date
range. For all in-sample and out-of-sample test results, the actual environ-
ment function was used. This means that out-of-sample or out-of-time refers
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to the data used for training the score. This approach is called an ”ideal sce-
nario validation”, because we do not want to confuse our scoring model tests
with errors from predicting the environment function using macroeconomic
variables.

The environment function clearly shows the 2001 and 2009 recessions and
the 2020 pandemic, Figure 2. The lifecycle functions, Figure 1, mirror those
observed previously [9].

The APC vintage functions, Figure 3, clearly show the strong periods of
adverse selection from 2006 through 2008 [12] and more recently from 2022
through 2024 [10]. These periods have previously been explained as arising
from sudden shifts in interest rates, causing a shift in the intrinsic risk of the
loan applicants in ways not visible from standard scoring attributes. This
effect was also observed in auto loans [13] and other consumer loans [15].

For purposes of demonstrating normalizing pandemic data for scoring,
the vintage function was not included in the credit score, and macroeco-
nomic adverse selection was not estimated after score construction. If these
models were put into production, researchers should continuously track vin-
tage residuals and include these in the forecast in order to align the credit
score forecasts from different periods. Vintage residuals are not exactly the
same as the APC vintage function. Conceptually, they are equivalent to
subtracting the credit score aggregated by vintage from the vintage function.

4.2 Credit Scores

To test the credit scoring approach, models were estimated on two-year pe-
riods and tested on all other two-year periods. For each type of credit score,
this process created four separate models plus a fifth model spanning the
entire range.

A panel logistic regression model was created with lifecycle and environ-
ment as fixed offsets, as discussed earlier. All of the scoring variables from
Table 1 were significant and retained in all models. Table 2 shows the Gini
coefficients for each model. In-sample test values are shown in bold. Out-of-
time test values are shown in regular type. The table is designed to facilitate
the comparison of panel logistic regression models with and without the APC
offsets. As shown in the Difference section, the difference is insignificant ex-
cept for the period 2020-2021, in which case the model with an offset had
a Gini coefficient on average 0.28 higher than the panel regression without
a coefficient. The model built on the entire span had a comparable gain,
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Figure 1: APC lifecycles obtained from Fannie Mae data, segmented by
bureau score bands. The y-axis is in units of monthly probability of default.
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presumably because of the inclusion of the 2020-2021 period.
The section for Freddie Mac was included as a fully out-of-sample test,

since none of this data was included in the model. The comparison of Freddie
Mac to Fannie Mae could give an idea as to how much a score would degrade
if built on Fannie Mae data and then applied to a lender’s in-house loan
origination. The Freddie Mac results generally show a reduction in Gini of
0.08 relative to Fannie Mae, but with the same pattern regarding the 2020-
2021 period.

For the second test, a panel stochastic gradient boosted regression tree
(SGBRT) was created. The SGBRT models were estimated on 60% of the
in-sample data with 40% as a cross-validation hold-out sample. The meta-
parameters for the SGBRT algorithm (number of leaves, tree depth, learning
rate, number of trees) were optimized in-sample on the 2016-2017 time slice
and used throughout. One model was given APC lifecycle and environment
as fixed offsets, and the other was not. Those results are shown in Table 3
with the same format as for the panel logistic regression outputs.

The panel SGBRT models show slightly better performance than panel
logistic regression in all tests, but the difference is not significant. The pattern
across test periods is again the same as for Table 2, with the 2020-2021 period
showing the greatest when including the APC inputs. The Freddie Mac out-
of-sample testing was even closer to the Fannie Mae results.

Previous studies have shown improvement when using APC inputs, in-
sample and most notably out-of-sample. The mortgage data is different, be-
cause it is a very large data set with a wide range of vintages. When modeled
over a short, two-year time window in a calm economic period with a lim-
ited set of available scoring variables, the advantages of APC inputs largely
disappear. For smaller, more dynamic portfolios of shorter-term loans, the
APC lifecycle will be an important contributor.

During very dynamic economic periods, as seen in 2020-2021, the APC
environment input is essential to creating an effective model. Perhaps iron-
ically, the model built during this time period with APC inputs performs
better in all time periods than the models built in-sample on those other
time periods. This is likely due to the increased ability to separate envi-
ronmental effects from scoring attribute dynamics when the environment is
dynamic and clearly identified.

The lack of significant improvement from SGBRT as compared to LR is
not a surprise. Much has been written trying to determine which model-
ing algorithm is best without paying sufficient attention to the data being
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modeled. This mortgage data, where the scoring attributes are either lin-
earized or predefined discrete factor levels, eliminates the need for SGBRT’s
nonlinear flexibility.

Overall, our results confirm that incorporating APC inputs into both
panel logistic regression and stochastic gradient boosted regression trees sig-
nificantly improves model performance during economic transitions, partic-
ularly the unprecedented conditions of the COVID-19 pandemic. This ap-
proach not only allowed for the inclusion of pandemic data in the modeling
but actually improved the resulting scores compared to excluding that data.

5 Conclusion

The fragility of credit scores to economic changes has often been accepted
as unavoidable. This paper demonstrates that credit scores can be designed
to be resilient through economic volatility and, in fact, benefit from volatil-
ity. The keys to this resilience are 1) using panel data (one observation
per account per month) rather than cross-sectional data (one observation
per account for the full training window), and 2) integrating Age-Period-
Cohort lifecycle and environment into the credit score estimation, whether
traditional logistic regression or machine learning.

This approach was quite effective for being able to model data from the
worst economic period of the COVID-19 pandemic. One particularly power-
ful aspect is that no macroeconomic variables were used. The pandemic is
notorious for breaking the traditional correlations between macroeconomic
factors and loan defaults due to the unprecedented government intervention
and forbearance programs. The APC environment function can quantify
what the environment was during any given time period without needing to
explain what caused that environment in macroeconomic terms.

Although the current research focused on modeling defaults, the same
methods can be applied to other key metrics, most commonly prepayment,
attrition, and recovery rates. Although survival models are designed to model
terminal events, the APC approach applies to any variable. For products such
as credit cards, this can include modeling purchase, payment, utilization, and
revolving balance rates.

The work here was performed on Fannie Mae and Freddie Mac mortgage
default data. Similar analysis for auto, credit card, and personal loans inter-
nally at banks with proprietary data has shown even more dramatic benefits

15



because of the smaller, more dynamic portfolios being modeled.
The specific combination of APC and credit scoring is one of a family of

algorithms that could be employed to achieve similar goals. Broadly speak-
ing, combining discrete time survival models and machine learning models
can overcome many shortcomings of today’s credit scores.

References

[1] Erik Andersson. Statistical Credit Rating with Survival Regression &
Gradient Boosting. PhD thesis, KTH Royal Institute of Technology,
2023.

[2] Alberto Archetti and Lorenzo Noci. Fpboost: Fully parametric gradient
boosting for survival analysis. arXiv preprint, 2024.

[3] Yacine Aı̈t-Sahalia, Dacheng Xiu, and Yilmaz Yılmaz. Covid-19 and
credit risk: A long memory perspective. Journal of Financial Eco-
nomics, 145(2):402–425, 2022.

[4] Avinash Barnwal, Hyunsu Cho, and Toby Hocking. Survival regression
with accelerated failure time model in xgboost. Journal of Machine
Learning Research, 22:1–22, 2021.

[5] Anthony Bellotti and Jonathan Crook. Survival analysis in credit risk
management: A review study. Journal of Credit Risk, 20(3):45–78, 2024.

[6] Sudipta Bose, Syed Shams, Muhammad Jahangir Ali, and Dessalegn
Mihret. Covid-19 pandemic risk and probability of loan default. Finance
Research Letters, 43, 2021.

[7] Joseph L. Breeden. Validation of stress testing models. In George A.
Christodoulakis and Stephen Satchell, editors, The Analytics of Risk
Model Validation, pages 13–25. Academic Press, 2008.

[8] Joseph L. Breeden. Macroeconomic adverse selection: How consumer
demand drives credit quality. In Credit Scoring and Credit Control XII
Conference, Edinburgh, August 2011.

[9] Joseph L. Breeden. Living with CECL: Mortgage Modeling Alternatives.
Prescient Models LLC, 2018.

16



[10] Joseph L. Breeden. Redesigning Credit Risk Modeling to Achieve Profit
and Volatiilty Targets. Bookbaby Publishing, USA, 2024.

[11] Joseph L. Breeden, Anthony Bellotti, and Yevgeniya Leonova. Instabil-
ities in cox proportional hazards models in credit risk. Journal of Credit
Risk, 19(2):29–55, May 2023.

[12] Joseph L. Breeden and Jose J. Canals-Cerdá. Consumer risk appetite,
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