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Camerino) + Antonio Navas (IMUS, Universidad de Sevilla) + Jasone
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Time for commercials



https://euroorml.euro-online.org/


And now, the talk ;)



From the simple to the complex

Jean-Baptiste

Lamarck

(1744-1829)

”La puissance de la vie tend continuellement à
composer l’organisation. Ce pouvoir essentiel,
inhérent à la vie, tend sans cesse à compliquer
l’organisation”.
(The power of life tends continually to build
organization. This essential power, inherent in
life, constantly strives to make organization
more complex)



From the simple to the complex

Jean-Baptiste

Lamarck

(1744-1829)

”La puissance de la vie tend continuellement à
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y(x1, . . . , xp) = β1x1 + β2x2 + . . .+ βpxp

Johann Carl Friedrich Gauß
(1777-1855)

Francis Galton
(1822-1911)



Generalized Linear Model (GLM)

g (E (Y |X = (x1, . . . , xp))) = β1x1+β2x2+. . .+βpxp

g :↑↑

I Linear regression

I Logistic regression

I Beta regression

I Poisson regression
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Classification and Regression Trees

From: A. Cutler, D. R. Cutler, J. R. Stevens



19th-20th centuries

Seeking explainability

I Machine Learning applied more and more in high stakes decision making Zafar
et al. (2017); Rudin et al. (2022), even regulated, e.g. EU AI Act Panigutti et al.
(2023).

I Different approaches to explainability, Molnar (2020):

I using simple models e.g. Hastie et al. (2015); Friedman et al. (2010); Blanquero et al.
(2021)

I approximating by simple models, e.g. LIME (Local Interpretable Model-Agnostic
Explanation), Ribeiro et al. (2016)

I measuring the importance of attributes: SHapley Additive exPlanations (SHAP),
Lundberg and Lee (2017); Permutation Importance, Fisher et al. (2019);

I counterfactual explanations, e.g. Wachter et al. (2017); Carrizosa et al. (2024b); Kurtz
et al. (2024); Maragno et al. (2024)
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Optimization

Source: This Week, 1951



Counterfactual Explanations. Motivation

Your loan has been denied
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Your loan has been denied. Had your salary been 30k instead of 25k and had you had
2 accounts open instead of 4, your loan would have been accepted



Counterfactual Explanations. Motivation

Your loan has been denied. Had your salary been 30k instead of 25k and had you had 2
accounts open instead of 4, your loan would have been accepted: The classifier would
have given a probability of + above 0.8, which is the threshold defined by the bank



Counterfactual Explanations. Ingredients

Given

I a binary classification problem on X ⊂ Rp , with classes {+,−} (class +: the
good guys)

I a probabilistic classifier P : X → [0, 1], P(x) : probability of belonging to class +

I x0 ∈ X ,

find the changes (to some x ∈ X (x0)) with minimum cost C(x0, x) that cause x0 to
increase their probability from P(x0)

minx C(x0, x)
s.t. P(x) ≥ τ

x ∈ X (x0)

minx (C(x0, x),−P(x))
s.t. x ∈ X (x0)

I X (x0) (see (Smyth and Keane, 2022)):

I Endogenous: Points from some training set −→ discrete optimization models
I Exogenous: Synthetic data −→ (mixed integer) nonlinear optimization models

I C(x0, x) = Dissimilarity(x0, x) + λcComplexity(x0, x), with λc > 0.

I Complexity(x0, x) =
∣∣{j : xj 6= x0 j}

∣∣
I Dissimilarity(x0, x) = π(σ(x − x0)), where

I π : convex ↑ in R+,
I σ : gauge in Rp (definite positive, positively homogeneous and subadditive), e.g. norms (not a

good idea!!!), quantile gauges, (Carrizosa et al., 2024b) or skewed norms, (Plastria, 1992;
Drezner and Drezner, 2021)

(Artelt and Hammer, 2019; Carrizosa et al., 2024b; Guidotti, 2022; Stepin et al., 2021;
Verma et al., 2021)
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Drezner and Drezner, 2021)

(Artelt and Hammer, 2019; Carrizosa et al., 2024b; Guidotti, 2022; Stepin et al., 2021;
Verma et al., 2021)



Score-based classifiers

(Carrizosa et al., 2021; Gambella et al., 2021)

I Score function f : X −→ R.

I Example: linear classifiers, f (x) = β>x + b.

I Logistic regression
I Support Vector Machines (with linear kernel)
I Additive trees (e.g. Random Forests, XGBoost, . . . )

From Scores to Probabilities

I Probability of x being classified in the positive class:

P(x) = g(f (x)),

with g : ↑ (link function)

I Example: Logistic regression: g(t) = 1
1+e−t (applied to a linear f )

I Example: SVM. g sigmoidal, (Beńıtez-Peña et al., 2024; Platt, 1999), with
parameters estimated via maximum likelihood from a training sample, and f :
linear combination of kernels

minx (C(x0, x),−f (x))
s.t. x ∈ X (x0)

Model valid for classification; also for
regression, (Carrizosa and
Navas-Orozco, 2025b)
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Numerical approaches:

I smooth optimization, e.g., (Joshi et al., 2019; Ramakrishnan et al., 2020;
Wachter et al., 2017; Mothilal et al., 2020; Lucic et al., 2019)

I mixed integer optimization, e.g., (Bogetoft et al., 2024; Carrizosa et al., 2024a,c;
Contardo et al., 2024; Cui et al., 2015; Fischetti and Jo, 2018; Kanamori et al.,
2020, 2021; Magagnini et al., 2025b; Maragno et al., 2022; Parmentier and Vidal,
2021; Russell, 2019)

I multi-objective optimization, e.g., (Dandl et al., 2020; Del Ser et al., 2022;
Raimundo et al., 2022),

I robust optimization, e.g., (Maragno et al., 2024; Virgolin and Fracaros, 2023),

I heuristic and metaheuristic approaches, e.g., (Carrizosa and Navas-Orozco,
2025b; Guidotti et al., 2019; Karimi et al., 2021; Magagnini et al., 2025a;
Poyiadzi et al., 2020)



Beyond
Counterfactual
Explanations:

Robust CEs

(Magagnini et al., 2025a; Carrizosa
and Navas-Orozco, 2025a,b)



Uncertainty on the data

I Data points replaced by sets (e.g. convex compact sets symmetric w.r.t. the
record)

I For k-NN as prediction model, the Integer Programming formulation of
(Contardo et al., 2024) is extended in (Magagnini et al., 2025b), and solved with
a Gaussian Variable Neighborhood Search as in (Carrizosa et al., 2012).



Uncertainty in the model. Linear scoring function (GLM)

minx
(
C(x0, x),−g−1(β>x)

)
s.t. x ∈ X (x0)

Sample

β = (2.07,−0.50)
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β = (2.12,−0.36)
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Uncertainty in the model. Linear scoring function (GLM)

maxx minβ∈B β
>x

s.t. x ∈ X (x0)
C(x0, x) ≤ τ

Sample

β = (2.17,−0.18)



maxx minβ∈B β
>x

s.t. x ∈ X (x0)
C(x0, x) ≤ τ

I Objective function: concave

I Subgradients at x obtained by solving minβ∈B β
>x

I Cutting planes

The choice of B
Set of Maximum Likelihood Estimates β when the data distribution P is at “distance”
at most κ from the empirical distribution Pω0 .

I Distributions P considered: those with same (finite) support as Pω0 , therefore
identified by the probability vector ω

I DKL(Pω ,Pω0 ) (Kullback-Leibler divergence)

I Lω(β)

I B =
{

arg maxβ Lω(β) for some ω,DKL(Pω ,Pω0 ) ≤ κ
}

I Assumptions (strong concavity, coercivity, smoothness) are imposed on Lω(β) to
have B well defined.
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min
β∈B

β>x

minx,ω β>x
s.t. β ∈ arg maxβ Lω(β)

DKL(Pω ,Pω0 ) ≤ κ



min
β∈B

β>x

minx,ω β>x
s.t. ∇βLω(β) = 0

DKL(Pω ,Pω0 ) ≤ κ



Communities and crime (Linear regression) κ = 0, κ = 1.



Breast cancer Wisconsin (Logistic regression) κ = 0, κ = 1.



Seoul bike sharing (Poisson regression) κ = 0, κ = 1.



Beyond Counterfactual
Explanations:

Counterfactual Plans
(Carrizosa et al., 2025)



Counterfactual Plans

Given

I a binary classification problem on X ⊂ RJ , with classes {+,−} (class +: the
good guys)

I a probabilistic classifier P : X → [0, 1], P(x) : probability of belonging to class +

I x0 ∈ X ,

I probability threshold values τ1 ≤ τ2 ≤ . . . ≤ τR ,

find the changes (sequentially to some x := (x1, x2, . . . xR) ∈ X (x0)) with minimum
cost C(x0, x) that cause x0 to increase their probability from P(x0) to τ1, then to τ2,
. . . , and finally to τR

minx C(x0, x)
s.t. P(x j ) ≥ τj j = 1, 2, . . . ,R

x ∈ X (x0)
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Cost function C

C(x0, x) = Dissimilarity(x0, x) + λcComplexity(x0, x),

I Dissimilarity(x0, x) =
∑R

r=1 ωrπ(σ(x r − x r−1)), with ωr > 0, π : convex ↑ in R+,
σ : quantile gauge in RJ

I Complexity(x0, x) =
∣∣∣{j : xr j 6= xr−1j for at least one r}

∣∣∣
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minx
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r=1 ωrπ(σ(x r − x r−1)) + λ
∑J

j=1 tj
s.t. f (x r ) ≥ g−1(τr ) r = 1, 2, . . . ,R(

1− tj
) (

x r j − x r−1j

)
= 0 r = 1, 2, . . . ,R, j = 1, 2, . . . , J

x ∈ X (x0)
tj ∈ {0, 1} j = 1, 2, . . . , J



Cost function C

C(x0, x) = Dissimilarity(x0, x) + λcComplexity(x0, x),

I Dissimilarity(x0, x) =
∑R

r=1 ωrπ(σ(x r − x r−1)), with ωr > 0, π : convex ↑ in R+,
σ : quantile gauge in RJ

I Complexity(x0, x) =
∣∣∣{j : xr j 6= xr−1j for at least one r}

∣∣∣

minx
∑R

r=1 ωrπ(σ(x r − x r−1)) + λ
∑J

j=1 tj
s.t. f (x r ) ≥ g−1(τr ) r = 1, 2, . . . ,R(

1− tj
) (

x r j − x r−1j

)
= 0 r = 1, 2, . . . ,R, j = 1, 2, . . . , J

x ∈ X (x0)
tj ∈ {0, 1} j = 1, 2, . . . , J

Linear objective if σ0 : `1 and
π : affine



Cost function C

C(x0, x) = Dissimilarity(x0, x) + λcComplexity(x0, x),
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s.t. f (x r ) ≥ g−1(τr ) r = 1, 2, . . . ,R(

1− tj
) (

x r j − x r−1j

)
= 0 r = 1, 2, . . . ,R, j = 1, 2, . . . , J

x ∈ X (x0)
tj ∈ {0, 1} j = 1, 2, . . . , J

Quadratic convex objective if
σ0 : `2 and π(t) = t2



Logistic regression. R = 5 steps. COMPAS dataset.



Beyond Counterfactual
Explanations:

Collective CEs
(Carrizosa et al., 2024a,b)



Collective Counterfactual Explanations

One-for-One Model

(Artelt and Gregoriades, 2024; Carrizosa
et al., 2024a,b; Warren et al., 2023)

minx C(x0, x)
s.t. β>x r ≥ τ r = 1, 2, . . . ,R

x ∈ X (x0)
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I

C(x0, x) =
S∑

s=1

∑
r∈Rs

ωsπ(σs(x r − x s 0))

+λind

R∑
r=1

∑
s∈Sr

‖x s 0 − x r‖0 + λglob

∥∥∥∥∥
(

max
r,s∈Sr

|xsj 0 − xrj |
)

1≤j≤p

∥∥∥∥∥
0

I x0 ∈ X (x0) =
∏

s X (x0s)

minx,ξ,ξ∗
∑S

s=1 ωsπ(σs(x s − x s 0)) + λind
∑S

s=1

∑p
j=1 ξsj + λglob

∑p
j=1 ξ

∗
j

s.t. −Msjξsj ≤ xsj 0 − xsj ≤ Msjξsj j = 1, . . . , p, s = 1, . . . ,S
ξsj ∈ {0, 1} s = 1, . . . , S , j = 1, . . . p
ξ∗j ≥ ξsj s = 1, . . . , S , j = 1, . . . p

ξ∗j ∈ {0, 1} j = 1, . . . , p

β>x s ≥ τ s = 1, . . . ,S
x s ∈ X (x s 0) s = 1, . . . ,S
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∥∥∥∥∥
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∑S
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∑p
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∗
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s.t. −Msjξsj ≤ xsj 0 − xsj ≤ Msjξsj j = 1, . . . , p, s = 1, . . . ,S
ξsj ∈ {0, 1} s = 1, . . . , S , j = 1, . . . p
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β>x s ≥ τ s = 1, . . . ,S
x s ∈ X (x s 0) s = 1, . . . ,S

Assuming σ0 : `2, c(t) = t2 and X 0 to be a bounded polyhedron with some
integer coordinates, problem above: Mixed Integer Convex Quadratic Model
with linear constraints



Counterfactual explanations for 10 instances Boston housing. Logistic regression and
random forest classifiers. Parameters λind = 0, λglob = 0.2. The feature perturbations
are displayed.



Features that need to be perturbed (in red) for all the instances in the Boston

housing dataset. The classifier considered is a logistic regression model



One-for-Many Model



Many-for-Many Model

(Kaufman and Rousseeuw, 1990)
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Many-for-Many Model

(Kaufman and Rousseeuw, 1990)



R = 3 counterfactual explanations for all the instances in the Boston housing.
Logistic regression.
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Optimization is crucial to address such problems. The structure of the prediction
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