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1. Preliminaries

Networks and Connectedness in Economics and Finance

Figure: Example of a financial network in crisis and non-crisis periods.

Billio, Getmansky, Lo, Pelizzon (2012), Econometric Measures of Connectedness and Systemic Risk in the
Finance and Insurance Sectors, Journal of Financial Economics, 104, 535-559
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1. Preliminaries

Networks @ Ca’ Foscari

Better statistical tools to extract networks
Sparsity

» Ahelegbey, Billio, Casarin (2016a), “Bayesian Graphical Models for Structural
Vector Autoregressive Processes” Journal of Applied Econometrics, 31(2),
357-386.

e Ahelegbey, Billio, Casarin (2016b), “"Sparse Graphical Vector Autoregression: A
Bayesian Approach”, Annals of Economics and Statistics, 123/124, 1-30.

e Billio, Casarin, Rossini (2019), “Bayesian nonparametric sparse VAR models”,
Journal of Econometrics, 212(1), 97-115.

Breaks and regimes

e Bianchi, Billio, Casarin, Guidolin (2019), "Modelling Systemic Risk with Markov
Switching Graphical SUR Models” Journal of Econometrics, 210(1), 58-74.

» Ahelegbey, Billio, Casarin (2024), “"Modeling Turning Points in the Global Equity
Market”, Econometrics and Statistics, 30, 60-75.
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1. Preliminaries

Networks @ Ca’ Foscari

Impact of network connectivity
Impact of connectivity

e Billio, Caporin, Panzica, Pelizzon (2023), “"The impact of network connectivity on
factor exposures, asset pricing, and portfolio diversification” International Review of
Economics and Finance, 84, 196-223.

e Billio, Pelizzon, Frattarolo (2023), “Networks in risk spillovers: A multivariate
GARCH perspective”, Econometrics and Statistics, 28, 1-29.

e Agudze, Billio, Casarin, Ravazzolo (2022), Markov Switching Panel with
Endogenous Synchronization Effects, Journal of Econometrics, 230(2), 281-298.

e Baltodano, Billio, Casarin, Costola (2025), Compounding Geopolitical and

Energy Risks: A clustered stochastic multi-COVOL model, Energy Economics,
149.
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1. Preliminaries

Networks @ Ca’ Foscari

New network connectivity and complexity measures
Entropy

» Billio, Casarin, Costola, Pasqualini (2016), “An entropy-based early warning
indicator for systemic risk” Journal of International Financial Markets, Institutions
and Money, 45, 42-59.

e Billio, Casarin, Costola, Frattarolo (2019), “Contagion dynamics on financial
networks”, in J. Chevallier, S. Goutte, D. Guerreiro, S. Saglio and B. Sanhaji
(Eds.) International Financial Markets (Vol 1), Routledge Advances in Applied
Financial Econometrics.

Opinion Dynamics

e Billio, Casarin, Costola, Frattarolo (2018), “"Disagreement in Signed Financial
Networks”, in M. Corazza, M. Durban, A. Grané, C. Perna and M. Sibillo (Eds.)
Mathematical and Statistical Methods for Actuarial Sciences and Finance,
Springer Verlag.

e Billio, Casarin, Costola, Frattarolo (2019), Opinion Dynamics and Disagreements
on Financial Networks, Advances in Decision Sciences, 23(4), 1-27.
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1. Preliminaries

Networks @ Ca’ Foscari

From network extraction to modelling temporal sequences of networks

General research questions
Q: how to design suitable modelT for random networks?

Q: how to measure the impact of randomness on standard network statistics?
Q: how to model and forecast temporal networks?

Challenges
e guarantee model parsimony
extend standard econometric models to network data (preserve interpretability)
allow for model flexibility (exploit data structure)
develop feasible inference methods
deal with the computational cost

= New models for networks and temporal networks
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1. Preliminaries

Networks @ Ca’ Foscari
New models for networks and temporal networks

Matrix models

e Billio, Casarin, Costola, Iacopini (2024), "COVID-19 spreading in financial
networks: A semiparametric matrix regression model”, Econometrics and
Statistics, forthcoming

e Billio, Casarin, Costola, Iacopini (2021) *A matrix-variate t model for networks”,
Frontiers in Artificial Intelligence, 4, 49.

e Billio, Casarin, Costola, Iacopini (2022), “"Matrix-variate Smooth Transition
Models for Temporal Networks”, Innovations in Multivariate Statistical Modeling,
Springer, 1, 137-167

Tensor models

In this presentation

e Billio, Casarin, Iacopini, Kaufmann (2023), “Bayesian Dynamic Tensor Regression”
Journal of Business and Economic Statistics, 41(2), 429-439.

» Billio, Casarin, Iacopini (2024), “Bayesian Markov switching Tensor regression for
time-varying networks” Journal of the American Statistical Association (Theory &
Methods), 119 (545), 109-121.
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1. Preliminaries

New time varying dynamic networks

Contributions

» methods & models = array data
» application = network data

Proposals for dynamic network modelling of edge information:

o [BDTR] Billio, Casarin, Iacopini, Kaufmann (2023), “Bayesian Dynamic Tensor
Regression” (more details)

= multi-layer networks with dynamic, real-valued edges
= smooth dynamics

o [BMSTR] Billio, Casarin, Iacopini (2024), “Bayesian Markov Switching Tensor
Regression for Time Varying Networks”

= multi-layer networks with dynamic, binary edges
= discrete switching dynamics
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1. Preliminaries

Questions and aims

Research questions:
Q: possible to exploit information from the structure of data?
Q: how to model a time series of tensor data?
Q: more data, few relevant = how to account for sparsity?

Goals:
(i) propose dynamic models for tensors of data
(ii) account for different types of data and dynamics
(i) explore dynamics of shock propagation (impulse-response) on real-valued networks

Our proposal:

1) use tensors = operations and representations

2) use global-local hierarchical prior distributions = sharing of information and
sparsity recovery
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1. Preliminaries

Motivations

Q: why not vectorize?

X estimation is infeasible
X requires unclear restrictions on coefficients
X disregards topological information in the structure of data

Q: why use tensors?

v estimation is feasible
v preserve and exploit data structure information
v powerful decompositions and operators

General model formulation and parametrisation allows:

e generalisation of linear regression models to tensor framework
 parsimonious model specification

e learn sparsity patterns from data

« allows for flexible prior definition and efficient posterior computation

Billio
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Bayesian Tensor Autoregressive Models 1. Introduction

Motivation
Availability of data:

(1) increasing size = high dimensionality
(1) multiple data sources = multiple “layers” (e.g., cross section, time, space, ...)

—- gathered or meaningfully rearranged into multidimensional arrays (tensors).

Example 1.

Tensor-valued data:
e multi-country panel: m variables, n countries, t times — 3-order tensor (e.g.,

Hoff (2015), Canova and Ciccarelli (2004)).

e temporal networks: relations between n subjects, observed t times — 3-order
tensor (e.g., financial networks Billio et al. (2012)).

o medical data: sequence of n X m brain images — 3-order tensor (e.g., Zhou
et al. (2013), Li and Zhang (2017)).

o multi-layer networks: relations between n subjects, d attributes, observed t
times — 4-order tensor (e.g., social networks Hoff et al. (2002), Hoff (2011),
Hoff (2015))
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1. Introduction

Bayesian Tensor Autoregressive Models

Motivation: COMTRADE & BIS Multi-Layer Networks
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Figure: International trade and financial networks. Nodes: countries. Edges: flows.
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Introduction

1.

Bayesian Tensor Autoregressive Models

COMTRADE & BIS Multi-Layer Networks

Motivation

(2005) (2006) (2007) (2008) (2009) (2010)

(2004)

(T 494e])
apes |

/

Z
o ly

(¢ 4ohey)
|eldueul

(2012) (2013) (2014) (2015) (2016)

(2011)

(T 494e])
apes|

(g 4ohey)
|eldueul

International trade and financial temporal networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 1. Introduction

Questions and Aims

Research questions:
Q: how to model a time series of tensor-valued data?
Q: many variables, few relevant = how to account for sparsity?

Q: possible to exploit information from the structure of the data?

G: provide a dynamic model for tensor-valued data

G: explore dynamics of (shock propagation) on tensors

Our contribution:

C1: use tensors algebra (spaces, operations and representations)
C2: use global-local hierarchical prior distributions (information sharing, sparsity)

C3: extend to tensor dynamic models the impulse response analysis
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Bayesian Tensor Autoregressive Models
Tensors

1. Introduction

Definition 1 (Tensor).

A real valued order-D tensor is an array X € R x-xIn,

Horizontal Slices

X X1,

X

Lateral Slices

Frontal Slices
Column (Mode-1)

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers
J':1,:,3
=l o
Mode-2
x:,3,1

Fibers
x1__,3,:
v/ Tensor algebra generalizes matrix algebra to multiple dimensions

Billio
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 2 (Matricisation).

Let X € R1XXInv be a order-N tensor. The mode-k matricisation maty is the

operator defined as:

matk : Rllx...xl,v N lexl_k

which maps a tensor X of dimensions (/,...,/y) into a matrix X of size (/x x I_g),
where [y =], I.

Remarks:

» “cut” the tensor into slices of I, rows — stack slices horizontally

> vec(X) = mat)«(X), with I* =[], /;
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 3 (Mode-n product).

Let X € Rh%*In be 3 order-N tensor, A € R/ and v € R/,
The mode-n product X, is defined as follows:

(XX nA)il7"'7in—17j7in+17"'7iN o Z Xil"“’in"”7iNaj’in

(XX nv)il,...,in_l,in_|_1,...,iN 0— : : Xi]_,...,i,-,,...,i/\/ Vin

Idea: compute the inner product of each mode-n fiber with the matrix/vector.
Effect: change n-th dimension of the tensor or reduces its order by one.

e Some operations performed in usual way (e.g., inner/Hadamard product, ... - see
also Kolda and Bader (2009), Cichocki et al. (2016))
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 4 (Contracted product).

The contracted product X' X ) between the (K + N)-order tensor
X e RJlx...xJlelx...xlN and the (N e M)—order tensor y c Rllx...xleHlx...xHM is 3

(K + M)-order tensor defined as

h In
(XXNy)j]_,...,jK,h]_,...,hM — Z Z ‘)C.'jlr"ajK)ila"')iNyil7---aiN)h17---ahl\/l'

=1  iy=1

e |t has the mode-n product as special case when N =1and M =0 (i.e. Y =Yy).

Billio 18



Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Representations

Powerful tool: several tensor representations/decompositions available (Tucker,
PARAFAC, ...)

Definition 5 (PARAFAC(R) decomposition).

Let G € Rh*-XIv 3nd let R € N be the rank of G. It holds:

R

6= 1"0...09, A erl (1)
r=1

where o is the outer product: (yy 0 ...0Yn)i, iv = V1. YN,y

Remark: multi-dimensional analogue of matrix low rank decomposition.

@ yél) y(2) (R)
3 73
7 ' 1 ’
y 4 $ y /s
] | | ] | | ] [ |
= + + ... +

‘ 2
/ e e AR)
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Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - ldea

Tensor Regression

For each entry of the response tensor:

Yi.e = Bjvec(X:) + €y, (2)
where i ;== (iy,...,iy). Compactly:

Vi = B X ny1vec(Xy) + &

(3)
gt ~ Ml,...,IN(Oa Z]_, 099 g zN)

Vi, X+ response and regressor tensors, with possibly different order and/or size
B: coefficient tensor, with N + 1 dimensions

&+ noise, with tensor Normal distribution (see Ohlson et al. (2013))
straightforward inclusion of other regressors: scalars, vectors, matrices, ...

Billio 20



Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - ldea

Tensor regression - Vectorised form

Given the tensor model
Vi =B xpny1vec(X:) + &, Ee ~ Ny (0,21, Zp) (3)
the corresponding vectorised model is
vec(V:) = maty1(B) vec(Xy) + vec(&r)
Sy = ByiXe + €, e~ N0,y ®...0%1), (4)
where maty(+) is the mode-k matricization operator mapping to a matrix of size

dk X d_k (where d_k = Hi;ﬁk d,').

Remarks:
» Kronecker structure of vectorised model's covariance matrix
» parametrisation for B mapped to parametrisation for By

Billio 21



Bayesian Tensor Autoregressive Models 2. Model

Existing Special cases

Univariate regression

If ; =1, Vje{l,..., N}, then model (3) reduces to:

ve = 3 vec(X:) + €r = B'x¢ + €, et ~ N (0, 02) (5)

Multivariate regression

If =1, Vj€{2,..., N}, then model (3) reduces to:

y: = B X5 vec(X;) + € = Bx; + €, er ~ N (0,X) (6)

Examples:

e SUR, when X; = (I, @ X) with X = [Xq1,..., X,], X; € R™ki y, ¢ R™
e VAR, VECM, MAI, when X; = y:_1
o Panel VAR, when y;: = [y1¢, y2:] and vec(X:) = x¢ = g(y:—1)
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Bayesian Tensor Autoregressive Models 2. Model

New Special cases - Tensor Autoregressive

Matrix autoregressive model

A particular case of model (3) is a MAR(1), when J; € R"*/ and X; = V;_1
Y: = B x3 vec( Yt—l) + E;, E; ~ ./\/’[,J(O, 21, 22). (7)

More generally, a MAR(p) for p € N is given by

p
Ye =) Bixzvec(Yi )+ Et, Ee ~ Ni4(0,%1, %) (8)
i=1

Use of matrix variate models/distributions:
e state space time series models Harrison and West (1999)
e Gaussian graphical models Carvalho et al. (2007)
e dynamic linear models Carvalho and West (2007), Wang and West (2009)

e longitudinal data classification and modelling Viroli (2011), Viroli and Anderlucci
(2013)

e matrix regression Viroli (2012), Ding and Cook (2018)
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Bayesian Tensor Autoregressive Models 2. Model

New special cases - Tensor Autoregressive

Tensor autoregressive of order 1

When Y;is an order-N tensor and Xy = Y;_1, then we get as particular case of
model (3), a tensor autoregressive model ART(1):

Ve =B xXpnq1vec(Vi—1) + &, Ee ~ Ny (0,21, Xp). (9)

Tensor autoregressive of order p

More generally, we can define a ART(p), for p € N, as:

p
Vi = Z Bi X n+1 vec(Vi—i) + &, Ee ~ Ny (0,21, .., Xy). (10)
=

Billio 24



Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

Parsimonious Parametrization of the

unrestricted VAR(1) ART(1)
N+1 N+1
H/+HHI+1 HI+ Z/(/+1)
\/-/ = ~~ - \/—/ "~
coeff covariance coeff covariance

Parsimonious Parametrization of the

PARAFAC(R) decomposition for B 5
B:Zﬁgr)o...oﬂ(,\;)
r=1

Restricted ART(1): R M4+ 31, [i(i+1)/2 =  estimation feasible
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Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

12000 -

Unrestricted
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Figure: parameter reduction.
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Bayesian Tensor Autoregressive Models 2. Model

Parametrization Issues
Q: Identification of PARAFAC marginals ,Bg) ?

(1) scale invariance

Alrﬁgr) ©...0 >‘Nr/3(r) — IBJ(r) © IBI('r)v v )‘J'r : H )\jr =1
J

(1) permutation invariance
71T(r) ﬁ”(r) gr) 0...0 ,8(,\;), V permutation m(-)

(ii1) (if N = 2) invariance up to multiplication by orthonormal vectors

(’BJ('r)cl) © (Bl(r)c/> = IBJ(-r) o ,3§r), VeceRY - cc=1

Remark 1 (PARAFAC Parametrisation).

» reduces the size of parameter space
» coefficient tensor B always identified

» no interest in marginals ,BJ(.r)
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Bayesian Tensor Autoregressive Models

4. Estimation

Prior Specification

Hierarchical global-local shrinkage prior for tensor marginals:

1B\, ¢, Whr) ~ N, (O, 7 ¢ Wi,)  Vhr

global comp |oca

e global and component parts

m(7) ~ Ga(a-, b;), (@) ~ Dir(x)

e local part

7"'(>\h,r) ~ Qa(EA,B,\), 7T(Wh,r,k‘)‘h,r) ~ gXp()‘%,r/z)

Noise covariances
77(7) ~ 93(5775’7)7 7T(Zhh/) ™~ ZW/h(fh, VW/?)

Billio
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Bayesian Tensor Autoregressive Models 4. Estimation

Prior Specification - -~
L a ' A
. a)\ /) . b)\/)
- N\ / /_\ N\
l a |
\ ,y /) \ b’y/)

-

Figure: DAG of prior structure and model.
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Bayesian Tensor Autoregressive Models 4. Estimation

Posterior Computation - Gibbs sampler

Step 1. sample global and component variance hyper-parameters from
o collapsed Gibbs: p(v,|B,W) ~ GiG(ax — do/2,2b,,2C;) then ¢, =1,/ > 9y
o p(7|¢,B,W) ~ GiG(a; — Rdy/2,2b-,2 ), N;)

Step 2. sample local variance hyper-parameters and tensor marginals from
© p(Anrlor, T, ﬂg;r)) ~Ga (a)\ + Ip, by + Hﬂgvr) . /\/T¢r)

r . r 2
o P(Wh kA 0,7, BY)) ~ GIG (3,02 B /(760)) Yk € [L, 14
@ p(ﬁ&,r)‘/@(_?plg—h¢777Y721722723az4) NMh(Mﬁhaz,@h)

Step 3. sample noise covariance matrices from
o P(VIZT1, 2, T3, %4) ~ Ga(@y + (Thoy 7h + Th) /2, by + tr(5; WaZ, 1) /2)
o p(Xhly, Zon, B,Y) ~IW, (Th+ Tly, YVh + Sp)
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Bayesian Tensor Autoregressive Models 5. Application
Application | - COMTRADE data

(1998) (1999) (2000) (2001) (2002) (2003) (2004)

(2005) (2006) (2007) (2008) (2009) (2010) (2011)

(2012) (2013) (2014) (2015) (2016)

Figure: Trade network from 1998 (top left) to 2016 (bottom right). Nodes are countries, red and blue
edges stand for exports and imports between two countries. Edge thickness represents flow magnitude.

Billio
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - Single layer network

Matrix autoregressive model - MAR(1)

Ye = B x3vec(Yi—1) + Et, E: ~ N10.10(0, X1, X>) (14)

» mode-3 matricized tensor: “lH"' i ll : H' |":l
mat3(B)/ = Bé = 20 JI" I' E .: i E !. :' 0.15
jrIRmIEE iE =
lvec(B..1), vec(B..2), . . ., vec(B-:100) ] 3“1:_'!4., £ 1I :::L:.! H IE_'_ET:
REL i &= B ]
» entry (i,)) of Bj: H‘uigm iHI _;:1_ ;;EIIE!:‘.:‘; |
i | WAl Bl :
impact edge j [t —1] — i [t] “la !. . PR - R .!
707|’| A I' I ' 'i il 1 -0.05
'!ll ! | i--. |_r: rr -:
Note: vertical regularities = ." i '.i LHITE TN B
transaction at t — 1 having similar .“ L | ||:I |-l-| Ik E:

Impact on all transactions at t
Figure: Estimated Bj.
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Bayesian Tensor Autoregressive Models 5. Application

Properties of ART(1) - Impulse Response Function

Definition 2 (Block-orthogonalized IRF for tensor models).
Denote X the covariance matrix of the vectorised tensor autoregressive model
ART(1). We propose the block-orthogonalised impulse response function from the

transformation

vec(Vy) =Y ier =) (Pil)(L eri) e ~N(0,X)
i=0 i=0
=Y (®sl)ne—;  me~N(0,D) (15)
i=0

where

AlO

o=, b =BLd;_1. 16
NG 0 2 Pic1 (16)

Y

D:Ll-Z-(L’)lzl

and A is a square matrix of size k equal to the number of entries to be shocked.
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Bayesian Tensor Autoregressive Models 5. Application

Single layer network - block OIRF
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Bayesian Tensor Autoregressive Models

5. Application

Single layer network - block OIRF
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Bayesian Tensor Autoregressive Models 5. Application

Single layer network - IRF analysis

Comments on positive shock to US,DE,UK exports

e pos shock to US exports more effective on the network (higher average
magnitude) than to DE or UK

o all cases: overall positive effect on network = stimulus to international trade

e all cases: immediate boost to imports of Switzerland, Germany and Austria

Comments on negative shock DE imports
e overall negative effect on international trade

e one lag - mostly affected: imports Austria, Switzerland, Germany and France

e more lags: alternating sign decay

» shock persistence = slow decay in all cases (similar decay pattern)
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5. Application

Bayesian Tensor Autoregressive Models

COMTRADE & BIS Multi-Layer Networks

Application Il
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International trade and financial networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - multi-layer networks

Tensor autoregressive model ART (1)

Vi =B x4 VeC(yt—l) + &4, Er ~ N10,10,2(07 21,2, Z3) (17)
unrestricted VAR(1) ART(1) with PARAFAC(R)
N+1 N+1

H/+ HI Hl+1 RZ/+ Zl(l+1)
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - multi-layer networks

Tensor autoregressive model ART (1)

Vi = B xqvec(Vi_1) + &, Er ~ N10,10,2(0, X1, X2, X3) (17)
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Empirical Application - multi-layer networks
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Figure: Estimated covariance matrices: 3 (left), 3o (center), 33 (right).

e higher values for individual variances

e mostly positive correlations
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5. Application

Impulse Response: US import

overall slightly negative effect on both
layers (trade and financial) of the network

reaction of the financial layer is higher in
magnitude = higher responsiveness of
capital flows w.r.t. trade goods flows

most affected real goods transactions are
between Switzerland, Germany and France
(the exporters) vis-d-vis UK, Ireland,
Sweden and Japan (the importers)

same relation occurs on the financial layer
of the network, with opposite sign and
greater magnitude

proposed interpretation: kind of
“substitution effect”

fast decay

Trade
(layer 1)

Financial

(layer 2)

Shock to US imports: -1%
h=1

<1078

= |

0.5
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CH
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GB
1IE
JP
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Impulse Response: UK financial flows

Shock to GB capital inflows: -1%
h=1 h=2
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Impulse Response: UK financial flows

Shock to GB capital inflows: -1% and outflows +1%
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shock capital inflows shock capital inflows 4+ outflows

o overall slightly negative effect on the e one lag: positive average impact on
capital (in- and out-) flows between the capital flows, both in- and out- (in
countries particular, Japan, UK, Switzerland and

_ _ Denmark)

o Austria and Japan (among the top capital
exporters) = overall reduction of capital e impact on Denmark and Germany =
outflows moving in opposite directions, both on

from the financial and the commercial

e Ireland and Germany (among the least (similar in previous case)

capital exporting countries) = positive
effect on outflows o overall total impact of shock is greater

than in the previous two situations = due

e substitution effect between Switzerland to the magnitude of the shock

and Germany

e increase in UK capital outflows = overall

o trade layer: overall positive effect, with positive cascade effect (stimulates the

smaller magnitude than that on the outflows from other countries). Impact on

financial layer :
y trade network is smaller

» Both cases: persistence of a financial shock greater than that of trade shock
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Conclusions

Proposal: linear, dynamic tensor regression model

» generalises linear regression models to multi-dimensional regression
» PARAFAC tensor decomposition for parsimony

» hierarchical global-local shrinkage prior for sparse coefficients

» good performance against synthetic data up to 50 x 50

X/
*

application to COMTRADE network (matrix AR(1) model):
v/ impact of trade links is heterogeneous and sparse
v/ heterogeneous magnitude and persistence of shock propagation
v role of network topology in shock propagation

*

application to COMTRADE+BIS 2-layer networks (tensor AR(1) model):
v/ impact of trade and financial links are heterogeneous and sparse
v/ financial shock propagation has higher magnitude
v block-orthogonal tensor IRF
v/ within + between layer shock propagation
v/ meaningful country-specific IRF results
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