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1. Preliminaries

Networks and Connectedness in Economics and Finance

Figure: Example of a financial network in crisis and non-crisis periods.
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1. Preliminaries

Networks @ Ca’ Foscari

Better statistical tools to extract networks

Breaks and regimes

Better statistical tools to extract networks
Sparsity

• Ahelegbey, Billio, Casarin (2016a), “Bayesian Graphical Models for Structural 
Vector Autoregressive Processes” Journal of Applied Econometrics, 31(2), 
357-386.

• Ahelegbey, Billio, Casarin (2016b), “Sparse Graphical Vector Autoregression: A 
Bayesian Approach”, Annals of Economics and Statistics, 123/124, 1-30.

• Billio, Casarin, Rossini (2019), “Bayesian nonparametric sparse VAR models”, 
Journal of Econometrics, 212(1), 97-115.

Breaks and regimes
• Bianchi, Billio, Casarin, Guidolin (2019), “Modelling Systemic Risk with Markov 

Switching Graphical SUR Models” Journal of Econometrics, 210(1), 58-74.
• Ahelegbey, Billio, Casarin (2024), “Modeling Turning Points in the Global Equity 

Market”, Econometrics and Statistics, 30, 60-75.
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1. Preliminaries

Networks @ Ca’ Foscari

Impact of network connectivityImpact of network connectivity
Impact of connectivity

• Billio, Caporin, Panzica, Pelizzon (2023), “The impact of network connectivity on 
factor exposures, asset pricing, and portfolio diversification” International Review of 
Economics and Finance, 84, 196-223.

• Billio, Pelizzon, Frattarolo (2023), “Networks in risk spillovers: A multivariate 
GARCH perspective”, Econometrics and Statistics, 28, 1-29.

• Agudze, Billio, Casarin, Ravazzolo (2022), Markov Switching Panel with 
Endogenous Synchronization Effects, Journal of Econometrics, 230(2), 281-298.

• Baltodano, Billio, Casarin, Costola (2025), Compounding Geopolitical and 
Energy Risks: A clustered stochastic multi-COVOL model, Energy Economics, 
149.
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1. Preliminaries

Networks @ Ca’ Foscari

New network connectivity and complexity measures

Opinion Dynamics

New network connectivity and complexity measures
Entropy

• Billio, Casarin, Costola, Pasqualini (2016), “An entropy-based early warning 
indicator for systemic risk” Journal of International Financial Markets, Institutions 
and Money, 45, 42-59.

• Billio, Casarin, Costola, Frattarolo (2019), “Contagion dynamics on financial 
networks”, in J. Chevallier, S. Goutte, D. Guerreiro, S. Saglio and B. Sanhaji 
(Eds.) International Financial Markets (Vol 1), Routledge Advances in Applied 
Financial Econometrics.

Opinion Dynamics
• Billio, Casarin, Costola, Frattarolo (2018), “Disagreement in Signed Financial 

Networks”, in M. Corazza, M. Durbán, A. Grané, C. Perna and M. Sibillo (Eds.) 
Mathematical and Statistical Methods for Actuarial Sciences and Finance, 
Springer Verlag.

• Billio, Casarin, Costola, Frattarolo (2019), Opinion Dynamics and Disagreements 
on Financial Networks, Advances in Decision Sciences, 23(4), 1-27.
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1. Preliminaries

Networks @ Ca’ Foscari

From network extraction to modelling temporal sequences of networks

New models for networks and temporal networks

From network extraction to modelling temporal sequences of networks

General research questions
Q: how to design suitable modelT for random networks?
Q: how to measure the impact of randomness on standard network statistics?
Q: how to model and forecast temporal networks?

Challenges
• guarantee model parsimony
• extend standard econometric models to network data (preserve interpretability)
• allow for model flexibility (exploit data structure)
• develop feasible inference methods
• deal with the computational cost

⇒  New models for networks and temporal networks
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1. Preliminaries

Networks @ Ca’ Foscari
New models for networks and temporal networks
Matrix models

Tensor models
In this presentation

• Billio, Casarin, Iacopini, Kaufmann (2023), “Bayesian Dynamic Tensor Regression” 
Journal of Business and Economic Statistics, 41(2), 429-439.

• Billio, Casarin, Iacopini (2024), “Bayesian Markov switching Tensor regression for 
time-varying networks” Journal of the American Statistical Association (Theory & 
Methods), 119 (545), 109-121.

New models for networks and temporal networks
Matrix models

• Billio, Casarin, Costola, Iacopini (2024), “COVID-19 spreading in financial 
networks: A semiparametric matrix regression model”, Econometrics and 
Statistics, forthcoming

• Billio, Casarin, Costola, Iacopini (2021) “A matrix-variate t model for networks”, 
Frontiers in Artificial Intelligence, 4, 49.

• Billio, Casarin, Costola, Iacopini (2022), “Matrix-variate Smooth Transition 
Models for Temporal Networks”, Innovations in Multivariate Statistical Modeling, 
Springer, 1, 137-167

Tensor models
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New time varying dynamic networks

Contributions
► methods & models ⇒  array data
► application ⇒  network data

Proposals for dynamic network modelling of edge information:

• [BDTR] Billio, Casarin, Iacopini, Kaufmann (2023), “Bayesian Dynamic Tensor 
Regression” (more details)
⇒  multi-layer networks with dynamic, real-valued edges
⇒  smooth dynamics

• [BMSTR] Billio, Casarin, Iacopini (2024), “Bayesian Markov Switching Tensor 
Regression for Time Varying Networks”
⇒  multi-layer networks with dynamic, binary edges
⇒  discrete switching dynamics
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Questions and aims

Research questions:
Q: possible to exploit information from the structure of data?
Q: how to model a time series of tensor data?
Q: more data, few relevant ⇒  how to account for sparsity?

Goals:
(i) propose dynamic models for tensors of data
(ii) account for different types of data and dynamics
(iii) explore dynamics of shock propagation (impulse-response) on real-valued networks

Our proposal:
1) use tensors ⇒  operations and representations
2) use global-local hierarchical prior distributions ⇒  sharing of information and 

sparsity recovery
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Motivations
Q: why not vectorize?

X  estimation is infeasible
X  requires unclear restrictions on coefficients
X  disregards topological information in the structure of data

Q: why use tensors?
✓ estimation is feasible
✓ preserve and exploit data structure information
✓ powerful decompositions and operators

General model formulation and parametrisation allows:
• generalisation of linear regression models to tensor framework
• parsimonious model specification
• learn sparsity patterns from data
• allows for flexible prior definition and efficient posterior computation

Billio 10
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Bayesian Tensor Autoregressive Models 1. Introduction

Motivation
Availability of data:
(i) increasing size ⇒ high dimensionality
(ii) multiple data sources ⇒ multiple “layers” (e.g., cross section, time, space, ...)

⇒ gathered or meaningfully rearranged into multidimensional arrays (tensors).

Example 1.

Tensor-valued data:
• multi-country panel: m variables, n countries, t times → 3-order tensor (e.g.,

Hoff (2015), Canova and Ciccarelli (2004)).

• temporal networks: relations between n subjects, observed t times → 3-order

tensor (e.g., financial networks Billio et al. (2012)).

• medical data: sequence of n × m brain images → 3-order tensor (e.g., Zhou

et al. (2013), Li and Zhang (2017)).

• multi-layer networks: relations between n subjects, d attributes, observed t

times → 4-order tensor (e.g., social networks Hoff et al. (2002), Hoff (2011),

Hoff (2015))
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Bayesian Tensor Autoregressive Models 1. Introduction

Motivation: COMTRADE & BIS Multi-Layer Networks

Layer/Time (2004) (2016)
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Figure: International trade and financial networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 1. Introduction

Motivation: COMTRADE & BIS Multi-Layer Networks
(2004) (2005) (2006) (2007) (2008) (2009) (2010)
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Figure: International trade and financial temporal networks. Nodes: countries. Edges: flows.
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Bayesian Tensor Autoregressive Models 1. Introduction

Questions and Aims

Research questions:

Q: how to model a time series of tensor-valued data?

Q: many variables, few relevant ⇒ how to account for sparsity?

Q: possible to exploit information from the structure of the data?

Goals:

G: provide a dynamic model for tensor-valued data

G: explore dynamics of (shock propagation) on tensors

Our contribution:

C1: use tensors algebra (spaces, operations and representations)

C2: use global-local hierarchical prior distributions (information sharing, sparsity)

C3: extend to tensor dynamic models the impulse response analysis
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors

Definition 1 (Tensor).

A real valued order-D tensor is an array X ∈ R
I1×...×IN .

� Tensor algebra generalizes matrix algebra to multiple dimensions
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 2 (Matricisation).

Let X ∈ R
I1×...×IN be a order-N tensor. The mode-k matricisation matk is the

operator defined as:

matk : RI1×...×IN → R
Ik×I−k

which maps a tensor X of dimensions (I1, . . . , IN) into a matrix X of size (Ik × I−k),
where I−k =

∏
j �=k Ij .

Remarks:

� “cut” the tensor into slices of Ik rows → stack slices horizontally

� vec(X ) = matI∗(X ), with I ∗ =
∏

j Ij
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 3 (Mode-n product).

Let X ∈ R
I1×...×IN be a order-N tensor, A ∈ R

J×In and v ∈ R
In .

The mode-n product ×n is defined as follows:

(X×nA)i1,...,in−1,j ,in+1,...,iN
:=

In∑
in=1

xi1,...,in,...,iNaj ,in

(X×nv)i1,...,in−1,in+1,...,iN
:=

In∑
in=1

xi1,...,in,...,iNvin

Idea: compute the inner product of each mode-n fiber with the matrix/vector.

Effect: change n-th dimension of the tensor or reduces its order by one.

• Some operations performed in usual way (e.g., inner/Hadamard product, ... - see
also Kolda and Bader (2009), Cichocki et al. (2016))
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Operations

Definition 4 (Contracted product).

The contracted product X×̄NY between the (K + N)-order tensor

X ∈ RJ1×...×JK×I1×...×IN and the (N +M)-order tensor Y ∈ RI1×...×IN×H1×...×HM is a

(K +M)-order tensor defined as

(X×̄NY
)
j1,...,jK ,h1,...,hM

=

I1∑
i1=1

. . .

IN∑
iN=1

Xj1,...,jK ,i1,...,iNYi1,...,iN ,h1,...,hM .

• It has the mode-n product as special case when N = 1 and M = 0 (i.e. Y = y).
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Bayesian Tensor Autoregressive Models 1. Introduction

Tensors Representations

Powerful tool: several tensor representations/decompositions available (Tucker,
PARAFAC, . . . )

Definition 5 (PARAFAC(R) decomposition).

Let G ∈ R
I1×...×IN and let R ∈ N be the rank of G. It holds:

G =
R∑

r=1

γ
(r)
1 ◦ . . . ◦ γ(r)

N , γ
(r)
j ∈ R

Ij . (1)

where ◦ is the outer product: (γ1 ◦ . . . ◦ γN)i1,...,iN = γ1,i1 · · ·γN,iN

Remark: multi-dimensional analogue of matrix low rank decomposition.

++
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Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - Idea

Tensor Regression

For each entry of the response tensor:

yi,t = β′i vec(Xt) + εi,t , (2)

where i := (i1, . . . , iN). Compactly:

Yt = B×N+1 vec(Xt) + Et
Et ∼ NI1,...,IN (0,Σ1, . . . ,ΣN)

(3)

• Yt ,Xt : response and regressor tensors, with possibly different order and/or size

• B: coefficient tensor, with N + 1 dimensions
• Et noise, with tensor Normal distribution (see Ohlson et al. (2013))

• straightforward inclusion of other regressors: scalars, vectors, matrices, ...
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Bayesian Tensor Autoregressive Models 2. Model

A Tensor Model - Idea

Tensor regression - Vectorised form

Given the tensor model

Yt = B ×N+1 vec(Xt) + Et , Et ∼ NI1,...,IN (0,Σ1, . . . ,ΣN) (3)

the corresponding vectorised model is

vec(Yt) = matN+1(B) vec(Xt) + vec(Et)
⇔ yt = B ′N+1xt + εt , εt ∼ N (0,ΣN ⊗ . . .⊗ Σ1), (4)

where matk(·) is the mode-k matricization operator mapping to a matrix of size

dk × d−k (where d−k =
∏

i �=k di ).

Remarks:
� Kronecker structure of vectorised model’s covariance matrix
� parametrisation for B mapped to parametrisation for BN+1
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Bayesian Tensor Autoregressive Models 2. Model

Existing Special cases

Univariate regression

If Ij = 1, ∀ j ∈ {1, . . . ,N}, then model (3) reduces to:

yt = β′ vec(Xt) + εt = β′xt + εt , εt ∼ N (0, σ2) (5)

Multivariate regression

If Ij = 1, ∀ j ∈ {2, . . . ,N}, then model (3) reduces to:

yt = B ×2 vec(Xt) + εt = Bxt + εt , εt ∼ NI1(0,Σ) (6)

Examples:

• SUR, when Xt = (Inm ⊗ X ) with X = [X1, . . . ,Xn], Xi ∈ R
m×ki , yt ∈ R

nm

• VAR, VECM, MAI, when Xt = yt−1
• Panel VAR, when yt = [y1t , y2t ] and vec(Xt) = xt = g(yt−1)
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Bayesian Tensor Autoregressive Models 2. Model

New Special cases - Tensor Autoregressive

Matrix autoregressive model

A particular case of model (3) is a MAR(1), when Yt ∈ R
I×J and Xt = Yt−1

Yt = B ×3 vec(Yt−1) + Et , Et ∼ NI ,J(0,Σ1,Σ2). (7)

More generally, a MAR(p) for p ∈ N is given by

Yt =

p∑
i=1

Bi ×3 vec(Yt−i ) + Et , Et ∼ NI ,J(0,Σ1,Σ2). (8)

Use of matrix variate models/distributions:

• state space time series models Harrison and West (1999)

• Gaussian graphical models Carvalho et al. (2007)

• dynamic linear models Carvalho and West (2007), Wang and West (2009)

• longitudinal data classification and modelling Viroli (2011), Viroli and Anderlucci
(2013)

• matrix regression Viroli (2012), Ding and Cook (2018)
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Bayesian Tensor Autoregressive Models 2. Model

New special cases - Tensor Autoregressive

Tensor autoregressive of order 1

When Yt is an order-N tensor and Xt = Yt−1, then we get as particular case of 
model (3), a tensor autoregressive model ART(1):

Yt = B ×N+1 vec(Yt−1) + Et , Et ∼ NI1,...,IN (0,Σ1, . . . ,ΣN). (9)

Tensor autoregressive of order p

More generally, we can define a ART(p), for p ∈ N, as:

Yt =

p∑
i=1

Bi ×N+1 vec(Yt−i ) + Et , Et ∼ NI1,...,IN (0,Σ1, . . . ,ΣN). (10)
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Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

Parsimonious Parametrization of the Covariances

unrestricted VAR(1) ART(1)

N+1∏
j=1

Ij

︸ ︷︷ ︸
coeff

+
1

2

N∏
j=1

Ij

N∏
j=1

(
Ij + 1

)
︸ ︷︷ ︸

covariance

N+1∏
j=1

Ij

︸ ︷︷ ︸
coeff

+
1

2

N∑
i=1

Ij(Ij + 1)

︸ ︷︷ ︸
covariance

Parsimonious Parametrization of the Coefficients

PARAFAC(R) decomposition for B
B =

R∑
r=1

β
(r)
1 ◦ . . . ◦ β(r)

N

Restricted ART(1): R
∑N+1

j=1 Ij +
∑N

j=1 Ij(Ij + 1)/2 =⇒ estimation feasible
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Bayesian Tensor Autoregressive Models 2. Model

Proposed Parametrization

Parsimonious Parametrization

unrestricted VAR(1)

N+1∏
j=1

Ij +
1

2

N∏
j=1

Ij

N∏
j=1

(
Ij + 1

)

ART(1) with PARAFAC(R)

R
N+1∑
j=1

Ij +
1

2
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j=1

Ij(Ij + 1)
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Figure: parameter reduction.
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Bayesian Tensor Autoregressive Models 2. Model

Parametrization Issues

Q: Identification of PARAFAC marginals β
(r)
h ?

(i) scale invariance

λ1rβ
(r)
1 ◦ . . . ◦ λNrβ

(r)
N = β

(r)
j ◦ β(r)

i , ∀ λjr :
∏
j

λjr = 1

(ii) permutation invariance

β
π(r)
1 ◦ . . . ◦ βπ(r)

N = β
(r)
1 ◦ . . . ◦ β(r)

N , ∀ permutation π(·)
(iii) (if N = 2) invariance up to multiplication by orthonormal vectors(

β
(r)
j c′

)
◦
(
β
(r)
i c′

)
= β

(r)
j ◦ β(r)

i , ∀ c ∈ R
dj : c′c = 1

Remark 1 (PARAFAC Parametrisation).

� reduces the size of parameter space

� coefficient tensor B always identified

� no interest in marginals β
(r)
j
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Bayesian Tensor Autoregressive Models 4. Estimation

Prior Specification

Hierarchical global-local shrinkage prior for tensor marginals:

π(β
(r)
h |τ, φr ,Wh,r ) ∼ NIh(0, τ︸︷︷︸

global

φr︸︷︷︸
comp

Wh,r︸︷︷︸
local

) ∀ h, r

• global and component parts

π(τ) ∼ Ga(aτ , bτ ), π(φ) ∼ Dir(α)

• local part

π(λh,r ) ∼ Ga(aλ, bλ), π(wh,r ,k |λh,r ) ∼ Exp(λ2h,r/2)

Noise covariances

π(γ) ∼ Ga(aγ , bγ), π(Σh|γ) ∼ IW Ih(νh, γΨh)
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Bayesian Tensor Autoregressive Models 4. Estimation

Prior Specification

α

aλ bλ

λh,r

Wh,rφr

bτaτ

τ

β
(r)
h

B

γ

aγ bγ

ν j

Ψj Σj Yt

t = 1, . . . ,T

Figure: DAG of prior structure and model.
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Bayesian Tensor Autoregressive Models 4. Estimation

Posterior Computation - Gibbs sampler

Step 1. sample global and component variance hyper-parameters from

• collapsed Gibbs: p(ψr |B,W) ∼ GiG(α− d0/2, 2bτ , 2Cr ) then φr = ψr/
∑

l ψl

• p(τ |φ,B,W) ∼ GiG(aτ − Rd0/2, 2bτ , 2
∑

r Nr )

Step 2. sample local variance hyper-parameters and tensor marginals from

• p(λh,r |φr , τ,β(r)
h ) ∼ Ga

(
aλ + Ih, bλ +

∥∥∥β(r)
h

∥∥∥
1
/
√
τφr

)
• p(wh,r ,k |λh,r , φr , τ,β(r)

h ) ∼ GiG
(
1
2 , λ

2
h,r , β

(r)2

h,k /(τφr )
)

∀ k ∈ [1, Ih]

• p(β
(r)
h |β(r)

−h,B−r ,φ, τ,Y,Σ1,Σ2,Σ3,Σ4) ∼ NIh(μβh
,Σβh

)

Step 3. sample noise covariance matrices from

• p(γ|Σ1,Σ2,Σ3,Σ4) ∼ Ga(aγ + (
∑4

h=1 νh + TIh)/2, bγ + tr(
∑4

h=1ΨhΣ
−1
h )/2)

• p(Σh|γ,Σ−h,B,Y) ∼ IW Ih(νh + TIh, γΨh + Sh)
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Bayesian Tensor Autoregressive Models 5. Application

Application I - COMTRADE data
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Figure: Trade network from 1998 (top left) to 2016 (bottom right). Nodes are countries, red and blue

edges stand for exports and imports between two countries. Edge thickness represents flow magnitude.
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Bayesian Tensor Autoregressive Models 5. Application

Empirical Application - Single layer network

Matrix autoregressive model - MAR(1)

Yt = B ×3 vec(Yt−1) + Et , Et ∼ N10,10(0,Σ1,Σ2) (14)

� mode-3 matricized tensor:

mat3(B)′ = B ′3 =[
vec(B::1), vec(B::2), . . . , vec(B::100)

]
� entry (i , j) of B ′3:

impact edge j [t − 1] → i [t]

Note: vertical regularities =

transaction at t − 1 having similar

impact on all transactions at t
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0.2

Figure: Estimated B̂ ′3.

Billio 36



Bayesian Tensor Autoregressive Models 5. Application

Properties of ART(1) - Impulse Response Function

Definition 2 (Block-orthogonalized IRF for tensor models).

Denote Σ the covariance matrix of the vectorised tensor autoregressive model

ART(1). We propose the block-orthogonalised impulse response function from the

transformation

vec(Yt) =
∞∑
i=0

Φiεt−i =
∞∑
i=0

(ΦiL)(L
−1εt−i ) εt ∼ N (0,Σ)

=
∞∑
i=0

(ΦhL)ηt−i ηt ∼ N (0,D) (15)

where

D = L−1 · Σ · (L′)−1 =
[
A 0

0 S

]
, Φ0 = I , Φi = B ′4Φi−1, (16)

and A is a square matrix of size k equal to the number of entries to be shocked.
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Single layer network - block OIRF
DE exports +1%
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Figure: Positive effects in red, negative effects in blue.
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Single layer network - block OIRF
UK exports +1%
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Figure: Positive effects in red, negative effects in blue.
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Single layer network - IRF analysis

Comments on positive shock to US,DE,UK exports

• pos shock to US exports more effective on the network (higher average
magnitude) than to DE or UK

• all cases: overall positive effect on network ⇒ stimulus to international trade

• all cases: immediate boost to imports of Switzerland, Germany and Austria

Comments on negative shock DE imports

• overall negative effect on international trade

• one lag - mostly affected: imports Austria, Switzerland, Germany and France

• more lags: alternating sign decay

� shock persistence ⇒ slow decay in all cases (similar decay pattern)
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Application II: COMTRADE & BIS Multi-Layer Networks
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Figure: International trade and financial networks. Nodes: countries. Edges: flows.
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Empirical Application - multi-layer networks

Tensor autoregressive model ART(1)

Yt = B ×4 vec(Yt−1) + Et , Et ∼ N10,10,2(0,Σ1,Σ2,Σ3) (17)

Parameters

unrestricted VAR(1) ART(1) with PARAFAC(R)

N+1∏
j=1

Ij +
1

2

N∏
j=1

Ij

⎛
⎝ N∏

j=1

Ij + 1

⎞
⎠ R

N+1∑
j=1

Ij +
1

2

N∑
j=1

Ij(Ij + 1)
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Empirical Application - multi-layer networks

Tensor autoregressive model ART(1)

Yt = B ×4 vec(Yt−1) + Et , Et ∼ N10,10,2(0,Σ1,Σ2,Σ3) (17)

• mode-4 matricized:

B ′4 =
[
vec(B::1,1), vec(B::2,1), . . . ,

. . . , vec(B::1,200), vec(B::2,200)
]

• entry (i , j) of B ′4:

impact of edge j [t − 1] → i [t]
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Figure: Estimated B̂ ′4.
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Empirical Application - multi-layer networks
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Figure: Estimated covariance matrices: Σ̂1 (left), Σ̂2 (center), Σ̂3 (right).

• higher values for individual variances

• mostly positive correlations
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Impulse Response: US import

• overall slightly negative effect on both

layers (trade and financial) of the network

• reaction of the financial layer is higher in

magnitude ⇒ higher responsiveness of

capital flows w.r.t. trade goods flows

• most affected real goods transactions are

between Switzerland, Germany and France

(the exporters) vis-á-vis UK, Ireland,

Sweden and Japan (the importers)

• same relation occurs on the financial layer

of the network, with opposite sign and

greater magnitude

• proposed interpretation: kind of

“substitution effect”

• fast decay

Shock to US imports: -1%

h = 1
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Impulse Response: UK financial flows

Shock to GB capital inflows: -1%
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Impulse Response: UK financial flows

Shock to GB capital inflows: -1% and outflows +1%
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shock capital inflows

• overall slightly negative effect on the

capital (in- and out-) flows between the

countries

• Austria and Japan (among the top capital

exporters) ⇒ overall reduction of capital

outflows

• Ireland and Germany (among the least

capital exporting countries) ⇒ positive

effect on outflows

• substitution effect between Switzerland

and Germany

• trade layer: overall positive effect, with

smaller magnitude than that on the

financial layer

shock capital inflows + outflows

• one lag: positive average impact on

capital flows, both in- and out- (in

particular, Japan, UK, Switzerland and

Denmark)

• impact on Denmark and Germany ⇒
moving in opposite directions, both on

from the financial and the commercial

(similar in previous case)

• overall total impact of shock is greater

than in the previous two situations ⇒ due

to the magnitude of the shock

• increase in UK capital outflows ⇒ overall

positive cascade effect (stimulates the

outflows from other countries). Impact on

trade network is smaller

� Both cases: persistence of a financial shock greater than that of trade shock
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Conclusions

Proposal: linear, dynamic tensor regression model

� generalises linear regression models to multi-dimensional regression
� PARAFAC tensor decomposition for parsimony
� hierarchical global-local shrinkage prior for sparse coefficients
� good performance against synthetic data up to 50× 50

� application to COMTRADE network (matrix AR(1) model):
� impact of trade links is heterogeneous and sparse

� heterogeneous magnitude and persistence of shock propagation

� role of network topology in shock propagation

� application to COMTRADE+BIS 2-layer networks (tensor AR(1) model):
� impact of trade and financial links are heterogeneous and sparse

� financial shock propagation has higher magnitude

� block-orthogonal tensor IRF

� within + between layer shock propagation

� meaningful country-specific IRF results
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